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Abstract
Biomedical Entity Linking (BM-EL) task, which aims to match biomedical mentions in
articles to entities in a certain knowledge base (e.g., the Unified Medical Language System),
draws dramatic attention in recent years. BM-EL can help to disambiguate medical terms
and link to rich semantic information in the biomedical knowledge base, which can act as
an essential means for many downstream applications. Although entity linking tasks have
been investigated in the general domain and achieved great success, many challenges remain
in the biomedical field, for instance, highly complex terminology, less training data, and
entity ambiguity. In this survey, we categorize BM-EL methods into rule-based, machine
learning, and deep learning models according to the development of the model paradigm and
provide a comprehensive review of each approach. In-depth study of current BM-EL efforts,
we group the model architectures into four categories: joint entity recognition and linking,
graph-based global entity disambiguation, cross-lingual architectures, and model-efficiency
improvement. We further introduce six well-established datasets that are commonly used for
BM-EL tasks. Furthermore, we present a comparison of the different methods and discuss
their advantages and disadvantages. Finally, we discuss the limitations of existing methods
for BM-EL and discuss promising future research directions.

Keywords Biomedical entity linking · Biomedical entity disambiguation · Knowledge base

1 Introduction

1.1 Motivation

Significant advancements in the healthcare field have led to the substantial growth of the
biomedical corpus, including biomedical literature, electronic medical reports (EMRs), etc.
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[1]. Mining and using the vital information in the biomedical corpus are highly helpful for
researchers to build effective biomedical computational models for downstream biomedi-
cal analytics tasks. However, various problems with medical corpora, such as ambiguous
meanings, abbreviations, misspellings, and missing text, have posed huge challenges in
understanding medical texts. Therefore, it is important to disambiguate these terms by
matching them to their corresponding concepts in the knowledge base, which promotes the
study of Biomedical Entity Linking (BM-EL).

Knowledge Graph also known as Knowledge Base, represents a network of real-world
entities, i.e. objects, events, situations, or concepts, and illustrates the relationship between
them. BM-EL is proposed to match mentions in biomedical articles to entities in a biomed-
ical knowledge base, e.g., the Unified Medical Language System (UMLS) [2]. Figure 1
shows an illustration of the BM-EL task. Its ability to link and exploit the rich seman-
tic information in the biomedical knowledge base, entity linking (EL) acts as an essential
means for many downstream applications, such as population and health analytics [3],
medical information retrieval, question answering [4], and knowledge-graph construction.
BM-EL task is one of the most important tasks in the domain of Biomedical Knowledge
Graph research.

At present, most existing surveys of EL methods [5–9] focus on the general domain, and
there are few discussions about the EL efforts in the biomedical domain. Considering that
biomedical corpora contain more ambiguity and morphological variations than the corpora
in the general domain, we argue that achieving the BM-EL task requires more analysis
of the characteristics of the biomedical field. To this end, we pay attention to the rapidly
developing BM-EL in this survey. We review the technology development for the BM-EL
task and present the discussion about their characteristics and limitations.

In this survey, we review the papers published for the BM-EL task in the past, summarize
the technologies developed in the research field and provide valuable research discussions.
We first review BM-EL from the perspective of the technology-development process BM-
EL methods into rule-based models, machine learning (ML) models, and deep learning

Figure 1 An illustration about the BM-EL task. Entity mentions detected from various types of medical texts
are shaded; candidate entities for each entity mention in the knowledge base are indicated by blue dashed
boxes on the right; their correct mapped entities are indicated by the bold yellow text

2594 World Wide Web (2023) 26:2593–2622



(DL) models. We primarily focus on the DL models because it has been flourishing over
the past few years. Specifically, we conduct in-depth study of current BM-EL efforts and
discuss four global modification and optimization methods for BM-EL model architectures:
joint entity recognition and linking, graph-based global EL, cross-lingual architectures, and
model-efficiency improvement. After that, we present a qualitative comparison among dif-
ferent categories of methods and analyze their advantages and disadvantages. Additionally,
the biomedical domain involves various data categories, such as the corpora of the biomed-
ical literature, social media medical texts, and disease and clinical records, which differ
significantly from one another and lead to various challenges. This survey also focuses on
the characteristics and challenges of these three categories of data, presents six of the most
representative datasets that have been extensively used, and evaluates the results of different
models on the corresponding datasets to achieve quantitative comparison.

Overall, our contributions can be summarized as follows:

1. We analyze the research conducted on BM-EL and summarize the issues and chal-
lenges of BM-EL. We further study BM-EL from the perspective of the technology-
development process and present a comparison among different categories of methods
and analyze their advantages and disadvantages.

2. We analyze the characteristics and challenges of datasets applied to different scenar-
ios in biomedical and present six representative datasets. Afterward, we evaluate and
compare the methods summarized in this paper on these datasets.

3. Based on exhaustive research and analysis of existing research work, we discuss the
limitations of existing methods for BM-EL and investigate future research directions.

In this survey, we organize the overview as follows. We start with the definition of the
BM-EL task in Section 1.2. In Section 1.3, we highlight the current problems and challenges
of the BM-EL task. We then provide a systematic summary of the research progress related
to BM-EL according to the technology-development process in Section 2 and summarize
four methods for the overall revision and optimization of the BM-EL model in Section 3.
In Section 4, we categorize commonly used BM-EL datasets into different types, introduce
evaluation metrics, and present a quantitative analysis of different models’ performances.
Finally, we conclude the survey and suggest prominent directions for future work in BM-EL
in Section 5.

1.2 Problem statement

EL is the task of mapping mentions in text documents to standard entities in a given
knowledge base. A “mention” refers to language fragments that express entities in natural
language text. An “entity” is a word or phrase that is clearly defined in the knowledge base
and has a unique identifier. It can either be an ontology object in the real world (e.g., per-
son or community) or an abstract concept (e.g., concept or definition). Then we present the
BM-EL task in a formal definition as follows:

Definition 1 (Biomedical Entity Linking) Given a specified knowledge base (KB) in the
biomedical field consisting of N entities E = {e1, e2, . . . , eN }, a biomedical document D
contains a set of recognized entity mentions M = {m1,m2, . . . , mM }, and the task is to
find the entity ei ∈ E that mj ∈ M refers to.

Typically, BM-EL has three steps. First is entity recognition, which identifies the corre-
sponding biomedical mentions within the text. Second is candidate entity generation, which
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Figure 2 The architecture of BM-EL

generates a collection of relevant candidate entities for the mention from the knowledge
base. Third is entity disambiguation, which ranks the candidate entities based on their rel-
evance to the mention and selects the best candidate entity. We present a basic framework
that applies to the majority of models for BM-EL in Figure 2. However, most papers involv-
ing EL, in the generic and biomedical fields, focus only on the entity-disambiguation task,
and only a few studies focus on jointly performing entity recognition and disambiguation.
Thus, in this survey, we primarily focus on how different techniques help improve candidate
entity disambiguation.

1.3 Challenges in BM-EL

Although entity linking tasks have been investigated in the general domain and achieved
great success, many challenges remain in the biomedical field. In practice, the semantic
types and annotation criteria of biomedical datasets are often significantly different from
the characteristics of data types in other domains. Consequently, directly replicating EL
techniques that have performed well in other domains to study BM-EL problems may
not achieve satisfying results. Accordingly, more challenges exist in the biomedical field
as follows.

1. Text Features: Biomedical mentions and context usually have larger text spans than
in the general domain. Moreover, more abbreviations, morphological variations, word
order variations, and synonym variations exist. The highly complex terminological
characteristic makes traditional EL techniques less effective in biomedical corpora [10].

2. Entity Ambiguity: Biomedical entity ambiguity refers to the fact that the same word
or phrase can refer to different entities. In biomedical corpora, the same entity can have
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several different names, making it even more challenging to normalize. It is difficult to
link to the correct entity using only surface-level features, so many researchers try to
use additional information, such as fine-grained types, to normalize entities [10].

3. Corpora Limitations: EL tasks usually require rich corpora to conduct experiments.
For example, the extensively used Wikipedia corpora have no restrictions on the use
of its annotated texts, and researchers do not need to consider privacy protection
factors. However, the biomedical domain has fewer publicly available corpora and
annotated data. For example, annotations of clinical records are often expensive and
very restricted by privacy protection. Meanwhile, deep neural networks require a huge
amount of training data to be effective, thereby posing a greater challenge.

Biomedical-related research involves various fields such as biology, chemistry, medicine,
psychology, and statistics. Researchers consider a wide range of information, including
genes, proteins, disorders, drugs, cells, body structures, and clinical information from
EMRs[4]. The data characteristics of different biomedical fields significantly differ. The
techniques used and the research focus are also completely different, so a huge amount
of work is needed to summarize each one. For the reasons above, this paper focuses on
the current state of EL and standardization research on biomedical literature, social-media
medical texts, disease and clinical records, and other corpora in this field. In addition to
the general challenges of the BM-EL task summarized in the previous section, we sum-
marize the characteristics of the different types of medical text data and the corresponding
technical difficulties.

Textual clinical data Electronic health records contain a description of the patient’s med-
ical history, family history, and symptoms, as well as the doctor’s diagnosis based on the
symptoms, physical and chemical indicators, etc. However, these data usually have a short
context with much noise, e.g., misspelled words, incorrect grammar, abbreviations, and dif-
ferent variations of the same word. Moreover, for the same diagnosis and treatment plan,
different physicians may record different results. Therefore, EL on clinical text is a current
research focus.

Social-media-based medical data Social media and online health communities have a
large amount of medical-related textual information, and people like to share various health
experiences and consult related content online. For these data, we need to translate the
social-media style text (e.g., “I feel my temperature is high” or “I feel like throwing up”) to
formal medical style text (e.g., “fever” and “nausea”, respectively) [11]. Given the signifi-
cant linguistic differences between medical terms and patient vocabulary [12] and the fact
that social-media data often contain considerable noise, this task is very challenging [11]
and has received much attention recently[11, 13–16].

Biomedical-literature data Researchers have published many highly valuable biomedical
papers in a range of journals and magazines [17]. Biomedical literature is more standardized
compared with clinical texts. Generally, it represents the technical research results that con-
tain a large amount of specialized knowledge and unregistered terms. How to disambiguate
terminology entities through EL is to be solved [18–21].
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2 Biomedical entity linking

Reviewed the development of the models’ paradigm, BM-EL technology is in constant
progress, from the early rule-based models [22, 23] to the development models based on
ML [18, 29, 30] . Ultimately, with the vigorous development of the DL technology in recent
years, the DL model has become the most advanced in terms of performance in realizing the
biomedical field as the most mainstream framework of EL method [15, 31, 40]. In summary,
we categorize BM-EL methods into rule-based, ML, and DL models. This section focuses
on each type of technical approach’s essence and ideas and the different methods’ core fea-
tures. Table 1 summarizes the design choices BM-EL methods according to the proposed
taxonomy.

2.1 Rule-based entity linking

Earlier was primarily implemented using string-matching or dictionary look-up approach
to disambiguate entities. Table 2 shows a detailed comparison of different rule-based entity
linking methods. While string-matching methods usually define templates based on setting
spelling rules, word-formation rules, indicator words, prefix and suffix strings, followed by
using templates for exact or partial matching. Dictionary-based methods use entries from
existing dictionaries, which contain numerous vocabulary abbreviations, variants, synonyms
etc. to identify and match entities. In this section, we review various rule-based approaches
and summarize their models according to whether they are manual or automated in Table 2.

Different techniques can be used to assist both approaches (e.g., collecting concept men-
tions as additional synonyms from labeled data) [24, 44], and different string-matching
techniques (e.g., string overlap and edit distance) [43]. MetaMap [45] and cTAKES [46] are
the two most commonly used rule-based knowledge-intensive concept normalization tools
that use rules to generate lexical variants for each noun phrase and then perform dictionary
queries for each variant. Even for the rule-based approach, researchers have attempted to
learn and generate the corresponding rules automatically. Islamaj Doan and Lu [47] used
Lucene’s search as a basis for disease-name normalization utilizing dictionary lookup and
pattern matching. Kang et al. [23] focused on the obvious errors modeled by the dictio-
nary query approach and designed an NLP model containing five rules. D’Souza and Ng
[22] developed a multichannel filtering system based on the ShARe/CLEF dataset. The sys-
tem defines 10 rules with various priorities to measure morphological similarity between
mentions and entities for normalization purposes. Rule-based methods combined with ML
techniques also exist, and most scholars use ML techniques to automatically resume criteria
for selecting a suitable candidate. For example, Buyko et al. [25] transformed the gene-
mention coordination problem into a sequence labeling task by using conditional random
fields. Wermter et al. [48] developed a semantic similarity-scoring module in their Geno
gene name-normalization system.

Although traditional rule-based methods achieve good results, most of them rely on
a fixed, pre-defined approach, leaving them with the following problems. First, the rules
are primarily artificially designed, and covering all regulations is impossible. Second,
the design of the rules highly depends on the morphological characteristics of the entity,
and distinguishing between morphologically similar but semantically different contexts is
impossible. For example, the word “tender” originally means gentle and fragile, but in the
sentence “Lymph nodes are enlarged but are not tender”, it pertains to having hyperalgesia.
Finally, entity rules in one field do not apply to another field, e.g., regulations designed on
diseases do not apply to drugs.
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2.2 Machine learning based entity linking

Given the disadvantages of traditional rule-based methods, ML-based BM-EL tasks have
been gradually developed and widely used. The ML-based BM-EL task primarily expresses
entity mentions and candidate entities as feature vectors through manual design and sta-
tistical methods and then sorts and selects entities through various similarity-calculation
methods. We can divide entity ranking techniques into two categories: classification and
learning-to-rank.

The classification method converts the similarity-ranking problem into a classification
problem [49] by using the trained classifier to mark the truth or falsity of entity referent-
candidate entity pairs. When more than one referent entity pair is marked valid, then the
referent-entity pair with the highest similarity is used as the disambiguation result by
computing features such as bag-of-words and co-occurrence [26, 27]. For classification
methods, a support vector machine (SVM) approach can be used to identify the separa-
tion hyperplane in the feature space that maximizes the interval to separate the positive and
negative samples of the dataset. Gaudan et al. [28] used SVM trained on a “bag of words”
model to resolve ambiguous global abbreviations and reported 98.5% accuracy. One disad-
vantage of all classification methods is that the output space tends to be small because the
output space of a classification method must be the same as the number of concepts to be
predicted. Moreover, the classification method tends to ignore the relationship between the
candidate entity and the entity mention.

To avoid such problems, many systems utilize the learning-to-rank approach to rank the
set of candidate entities. An ML-based approach, DNorm, was first proposed by Leaman
et al. [18] for disease-word normalization. The basic idea of this model is to use pairwise
learning to rank, which means comparing the similarity of mention found in the text to
the entity concepts in the knowledge base and scoring them for ranking. Xu et al. [29]
also designed a pairwise learning algorithm. They normalized each mention of each pos-
itive ADR to each entity in MedDRA by defining three features and by using RankSVM
pairs. Leaman et al. [30] developed a generic named-entity identification and normalization
toolkit, i.e., TaggerOne, based on a semi-Markov algorithm.

Although ML has made significant progress in performance and accuracy compared with
rule-based methods, traditional ML methods have significant limitations. First, ML meth-
ods require complete and accurately labeled datasets, which are scarce and deadly for the
biomedical field, especially in clinical medical texts or authoritative datasets in other lan-
guages such as Chinese. Second, ML methods are more dependent on specific types of
domain knowledge, conferring difficulty in generalizing ML models trained this way to
other types of biomedical domains.

2.3 Deep learning based entity linking

With the rapid development of DL techniques, neural networks are widely used because of
their excellent generalization ability. These models have powerful feature-abstraction abil-
ity to learn practical and deeply distributed semantic information from texts, which makes
DL excel in nearly all tasks [50]. Although DL-based BM-EL methods may differ in the
implementation of technical details, their general steps are basically to generate various
embeddings based on mention and candidate entities, followed by the use of the embeddings
to calculate various features, and finally input the features into the DL models to obtain the
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optimum candidate entities [5]. Thus, we summarize the existing DL methods from three
dimensions: embedding generation, feature extraction, and model architecture.

2.3.1 Embedding generation

Embedding encodes objects with low-dimensional numerical vectors and retains their mean-
ings, which is convenient for upper-layer deep neural networks to process. DL-based
methods usually need to capture semantic information and common knowledge such as lex-
ical meaning and semantic roles from numerous unannotated corpora in advance by using
various embedding techniques.

Recently, DL methods based on pretrained embeddings such as word2vec and ELMo
have been effectively applied to many BM-EL tasks. Li et al. [19] and Luo et al.
[31] pretrained word embeddings from large corpora with Word2VECs implementation.
Miftahutdinov [51], Schumacher [32], and others used the ELMo to extend traditional
word embeddings to contextual word embeddings and subsequently integrate it with
existing task-specific architectures, thereby improving the state-of-the-art EL-architecture
framework benchmarks.

All the above are traditional word embedding, which uses a one-way language model
to learn language representation and uses only the preamble text information of a word
to extract semantics. BERT pretraining model [52] is a multilayer two-way transformer
encoder, which can complete sentence-level context word representation and has stronger
semantic information-extraction ability. To improve the capabilities of NLP tasks in the
biomedical domain, Lee et al.[53] pretrained large-scale biomedical texts and clinical notes
and complete the BioBERT model based on the BERT model structure. Xu et al.[33] pro-
posed an architecture that can consider morphological and semantic information, which
consists of a candidate generator and a BERT-based list ranker. The BERT-based list-wise
takes concept mentions and candidate concept names as input so it can process concepts
that never appear in the training data. Ji et al. [34] regarded the BMEL task as a sentence-
classification task and completed an EL architecture by fine tuning the BERT pretrained
model. Wei et al. [54] proposed integrating BERT/BioBERT/ClinicalBERT models based
on already fine tuned and trained BERT models into the corresponding local models and
effectively using contextual semantic features.

Figure 3 shows typical architectures of word-level embedding and character-level embed-
ding. As we can see from the figure, the word-level embedding methods cannot learn the
character-structure features inside words. So many researchers have used character-level
neural network methods to achieve character-level representation encoding by using the
structural features inside words. Such methods are especially applicable for biomedical-
concept standardization tasks because they can effectively solve the “out-of-vocabulary”
(OOV) problem in noisy spoken medical texts. Zhao et al.[35] then used Bi-LSTM to stitch
together pretrained word embeddings from Word2vec and character-level word representa-
tions from the convolutional neural network (CNN) to capture important character lexical
information. Niu et al.[36] proposed a multitask character-level attention network to capture
character-level features in OOV words and generate character-level attention weights on
domain-related positions in text sequences to effectively improve the accuracy of normaliza-
tion. Moreover, their existing EL methods combine entity-surface form, entity description,
and entity-type information to learn entity embedding. Given that this part is strongly related
to Section 2.3.2 feature introduction, we introduce it jointly in Section 2.3.2.
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Figure 3 Typical architectures of word-level embedding and character-level embedding

2.3.2 Feature extraction

More and more methods are adopting different embedding techniques for extracting features
to calculate the similarity between mentions and candidate entities, e.g., surface form, type,
or synonym similarity, etc.

Learning through entities’ surface forms is the most direct and easiest way to obtain
entity embeddings. To solve the EL problem for small datasets, Pan et al. [37] proposed a
CNN-based model with an ensemble of pretrained word vectors and two-step integration.
The model enables a shallow structure and integration mechanism based on the perfect-
matching morphological similarity approach to achieve proper linking in a limited training
set.

A knowledge base contains entity instances, as well as entity types and hierarchies of
types, which are popular features used by EL methods to learn entity embeddings. Murty
et al. [38] investigated the use of hierarchy-aware loss functions on a deep neural network
classifier to achieve integration of hierarchical type information in the embedding space
of entities and types, thereby gaining statistical efficiency in predicting similar concepts
and helping to classify rarer medical types. Zhu et al. [31] propose LATTE, a latent-type
EL model, learning fine-grained types without direct supervision to assist in joint entity-
disambiguation tasks. Vashishth [55] presents MEDTYPE, a fully modular system for
pruning out overgenerated candidates in medical EL by predicting the semantic type of an
entity mention.

Biomedical concepts may have multiple synonyms. Sung et al. [56] introduced BIOSYN,
which utilizes the synonym-marginalization technique and the iterative candidate retrieval
for learning biomedical entity representations, thereby maximizing the marginal likeli-
hood of the synonyms present in top candidates. Yuan et al. [15] proposed to construct
pretrained samples by collecting synonyms and definitions from knowledge base and sen-
tence templates and then injecting them into generative language models. They proposed
synonym-aware fine-tuning and decoding hints to improve the performance of the model by
considering the similarity of the text.
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2.3.3 Model architecture

Early DL-based techniques primarily utilize convolutional encoders. The main idea is to
project mentions and entities as distributed vectors containing semantic information. After
which, different backbone deep neural networks are applied to complete entity linking tasks.
Limsopatham [13] applied pretrained word embeddings to the CNN and recurrent neural
network (RNN) for the specification of medical concepts in social media texts and achieved
optimum performance on multiple datasets. Li et al. [19] proposed a CNN-based architec-
ture to compute the semantic similarity between candidate concepts and entity mentions
and then rank the candidate entities generated by rule-based methods. Miftahutdinov and
Tutubalina et al. [57] used a bidirectional RNN-based Encoder–Decoder model to imple-
ment the translation of the text on death certificates into medical codes. Luo et al. [31]
proposed a multiview CNN model with a multitask shared structure to capture back and inte-
grate valuable matching signals from different views, thereby solving the Chinese medical
short-text normalization problem.

Afterward, LSTM has become the backbone model for many NLP applications and
been widely used in BM-EL. Ishani et al. [39] designed a model based on triplet neural
networks with a loss function that influences the relative distance constraint to identify
positive and negative candidates concerning a disease mention. They explored the capabil-
ity of in-domain sub-word-level information in solving the task of disease normalization.
Tutubalin et al. [11] developed a direct task-specific end-to-end architecture for social-
media medical-text normalization tasks. The architecture includes bidirectional long- and
short-term memory, gated recursive units with attention mechanisms, and additional seman-
tic similarity feature based on UMLS. Fakhraei et al. [40] used the LSTM model to map
mentions and entities to a latent space while using the negative sampling technique to refine
the embedding.

Most methods introduced above are based on similarity calculation, i.e., the model
encodes mention and entity into the same vector space and calculates the similarity between

Figure 4 Generalized candidate entity ranking neural architecture
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Figure 5 Generative EL architecture

the embedded representations. Figure 4 depicts the typical architecture of the ranking com-
ponent. Such methods need to consider the problem of negative sampling in the training
phase and consume substantial storage in the inference phase.

Different from the ideas of the above methods, applying generative methods to EL tasks
in the biomedical field has gained considerable attention. Researchers regard the EL task
as a Natural Language Generation task (NLG), where a piece of text containing mention is
input, and the linked entity name is output. Figure 5 depicts a typical architecture for gen-
erative EL methods. Cao et al. [58] proposed GENRE, a seq2seq EL method in the general
domain pretrained on the Wikipedia EL dataset. However, using such a method directly
in biomedical domain has many limitations due to the lack of a massive expert-annotated
dataset and the high number of entity synonyms. Yuan et al. [15] used the Encoder-Decoder
structure of Transformer to accomplish biomedical seq2seq EL. The model reduces the need
for corpus size in the training phase by composing input sequences with synonyms and
explanations collected from the knowledge base and utterance templates. The BioBART
model proposed by Yuan et al. [16] also applies a generative approach. The model is based
on the architecture of BART, a classic model for NLG tasks, and removes some of the pre-
training tasks considering the difference in model-performance requirements for different
tasks. The model is pre-trained on the PubMed corpus and reaches a new SOTA on several
biomedical entity-linking datasets. However, all generative EL methods have a common
feature the training process requires vast computational resources to achieve competitive
performance.

3 Architecture modifications and optimizations

In the previous section, we introduce the main techniques according to the lineage of tech-
nology development. In this section, we also focus on the current important methods of
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overall model revision and technology optimization in the BM-EL field: joint entity recog-
nition and linking, graph-based global EL, cross-lingual architectures, and model-efficiency
improvement.

3.1 Joint entity recognition and disambiguation architecture

Existing research treats entity recognition and disambiguation as separate steps in EL. This
decoupling approach uses pipeline models to implement entity disambiguation and entity
recognition separately, leading to error cascades and a lack of mutual benefits.

State-of-the-art studies have shown that the joint modeling of biomedical-named entity
recognition and disambiguation has advantages over pipeline implementation owing to
their mutually beneficial relationship. Figure 6 depicts a typical architecture of joint entity
identification and disambiguation architecture. Leaman and Lu [30] used a joint scor-
ing function for biomedical-named entity recognition and disambiguation. Lou et al.[31]
proposed a transformation-based model that treats the output construction process as an
incremental transformation process. However, both methods rely heavily on manual fea-
tures and use simplistic methods to achieve union, which cannot encode complex features.
Zhao et al.[35] proposed a novel deep neural multitask learning framework based on CNN,
LSTM, and Word2vec methods to provide necessary support between biomedical-named
entity recognition and disambiguation joint.

Recently, specific models proposed the use of multitask analysis of recursive inference
to achieve overall optimization of the model. Rajani et al.[59] argued that integration tech-
niques may be superior to component techniques, using stacks to store multiple model
systems’ output and additional overlay features to evaluate the system output and train a
meta-classifier. The CNN-based method proposed by Niu et al. [36] combines the averaging
module of the word vector representation of a mention and the maximum pooling module
after CNN feature extraction with the maximum pooling operation of the sentence repre-
sentation where the mention is located. The combined result is then jointly fed into two
multilayer perceptrons to obtain the output. Wiatrak [20] and Mrini K [60] treated EL as
a multitask model, with the difference that Wiatrak [20] proposed a new task of mention
detection and entity typing. The mention detection is performed first, and then a multitask

Figure 6 Joint entity recognition and disambiguation architecture
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framework is trained using weighted targets, followed by reranking by entity typing. Mean-
while, Mrini K et al. [60] used the multitask learning of a hierarchical task (entity prediction,
entity classification, and entity disambiguation in a three-feature progressive representation)
to implement it jointly. Table 3 shows detailed comparison of different methods summarized
in this section, including main tasks, auxiliary tasks, model methods, and data types.

3.2 Graph-based global architectures

Conventionally, EL methods can be categorized into local and global models. Local methods
primarily obtain the information contained in the entity mention and its surrounding words
in the specified window. Each mention is independent of the other, and the information is
not interactive [61–64]. The local model focuses only on how to link the entities extracted
from the text to the knowledge base, ignoring the semantic connections between different
entities located in the same document. Conversely, global models encourage all alleged tar-
get entities in a document to be thematically consistent and disambiguate by computing the
thematic consistency, entity relatedness, transfer probability, and entity popularity features
between different target entities [65–70].

Global models usually build entity graphs based on a knowledge base to capture all
identified allegedly coherent entities in a document. Figure 7 shows the framework of
graph-based global model. The nodes in the graph represent entities, and the edges represent
their relationships. Generally, based on the document and its entity graph, we extract local
and global features for each candidate entity, and the association correlations among entity
mentions, candidate entities, entity mentions, and candidate entities are used for collabora-
tive inferences. Then the obtained features are encoded, and graph convolution and other
methods are used to conduct graph-based ranking algorithm to select the candidate enti-
ties with the highest score. In the following section, we will introduce graph-based global
architectures used by BM-EL.

Current supervised methods require a mass of manually labeled training data, which is
challenging for medical data. To address this problem, Jin et al. [71] proposed a new unsu-
pervised collective inference method, which works by obtaining well-structured ontologies

Figure 7 Framework of graph-based global model. The inputs of a set of mentions in a document are listed
at the top. The words in red indicate the current mention mi where mi−1, mi+1 are neighbor mentions, and
� (mi) = {

ei
1, e

i
2, e

i
3

}
denotes the candidate entity set for mi
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in the class of hierarchical and relational structures, as well as good semantic relationships
among ontologies. The knowledge base graph is constructed after the relationships and
subjected to similarity and entity ranking.

Angell et al. [41] proposed a new process based on clustering-based inference to imple-
ment joint EL, which is primarily based on an inference approach to construct a graph where
the union of mentions and entities is constructed as nodes in the graph. The edges in the
graph indicate the correlation weights between nodes, and multiple similar nodes are gath-
ered into a combination by a clustering approach. As long as one mention in the aggregated
mention group is linked to the correct entity, the whole cluster can be correctly classified,
and the zero-shot EL task can be effectively solved by such joint link-prediction methods.

Graph-representation learning has shown promising results in various representation
learning tasks on knowledge bases. D. Pujary et al. [72] utilize the graphical structure
of MeSHR and taxonomy by using state-of-the-art neural graph embeddings (GCN and
node2vec) to represent disease names. The neural-named entity recognition is now com-
bined with graph-based EL methods through multitask learning to improve the disease-name
normalization problem. Vretinari et al. [42] on top of GraphSAGE [73], R-GCN [74], and
MAGNN [21] to build the new ED-GNN model. The model represents the entities men-
tioned in the text fragments as query graphs and learns how to generate node embeddings
by aggregating rich structural and semantic information from the neighboring regions of
each node. The model is a robust spatially invariant aggregation function, and an effec-
tive negative sampling strategy is designed to identify negative sampling and improve the
disambiguation capability of the model.

3.3 Cross-lingual architectures

Currently, the vast majority of entities in the BM-EL tasks are available only in English.
For example, about 70% of terms in the UMLS[75, 76] meta thesaurus are from English,
about 11% are from Spanish, and less than 3% are from other included languages. The
cross-lingual EL approach [77] is valuable in advancing the field of BM-EL by using super-
vised signals from multiple languages to train models in the target language. Early CLEF
challenges include non-English biomedical-text normalization tasks. However, in 2015
and 2016, most teams rely on tools such as Google Translate and Bing TranslatorDENG
[78–80], which help achieve good results for the tasks but have more limitations, such as
web translators that cannot handle clinical documents or strictly privacy-protected data that
cannot be processed online.

To overcome the limitations of translation tools, many neural network models have been
used for the task of cross-lingual EL in the biomedical field. Roland Roller et al. [81]
proposed a conceptually normalized cross-language candidate search based on a character-
based neural translation model trained on multilingual biomedical terminologies. The model
is trained using UMLS’s Spanish, French, Dutch, and German versions. Fangyu et al. [82]
introduced a novel cross-lingual biomedical entity task (XL-BEL) to establish a bench-
mark for cross-lingual entity representations in biomedical domains in 10 languages with
broad coverage and reliable evaluation of current SotA on XL-BEL biomedical-entity rep-
resentations on XL-BEL. An effective transfer-learning scheme is also proposed, which
uses translations of generic domains to improve the cross-linguistic capabilities of domain-
specialized representation models. Borchert et al. [83] addressed the problem of a very
sparse corpus annotated at the entity-mention level and its mapping to concepts in languages
other than English by proposing a hybrid EL system, which is based on the NER pipeline of
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standard transformers for mention detection. Accordingly, two complementary candidate-
generation methods are provided: a TF-IDF vectorizer based on character n-grams and a
cross-lingual SapBERT model. Finally, using a rule-based reranker, a translation task for
Spanish language clinical-pathology reports is achieved.

3.4 Improvements onmodel efficiency

Many BERT-based models have been used to improve BM-EL and achieve state-of-the-art
results on many BM-EL datasets. However, these models are computationally expensive,
and the improvements made by fine tuning bring high computational costs and memory
usage. Thus, aside from model-accuracy improvements, researchers are also interested in
optimizing the number of model parameters and improving model inference speed. In
Table 4, we summarize models’ backbone architectures, the number of parameters and
compare their performance in terms of accuracy and model inference time in this section.

Lai et al. [84] conducted prior experiments disrupting word order and limiting the range
in attention mechanism. After which they found that the results of BERT-based models
are not significantly degraded. Accordingly, they concluded that for BM-EL tasks, the rich
syntactic and semantic information brought by the vast number of parameters used in the
BERT-based model are not fully used. Thus, their proposed model uses ResCNN as the
backbone network to encode the embedding representation, which is initialized by Pub-
MedBERT [85]. Experimental results show that the model achieves similar performance to
the BERT-based model while the number of parameters is reduced to 1% and the inference
speed increases by up to 21.3 times.

Chen et al. [86] also used CNN as the backbone network of the model to significantly
reduce the model parameters. They further introduced more features into the embedding
representation of mention and entity to improve the model performance. By designing the
Alignment Layer in the Ranking stage, the model computes the attention on each token of
mention and entity names separately, thereby solving the problems such as having multiple
names for the same entity (including interference from different word orders) in the biomed-
ical domain. The number of parameters is significantly optimized, whereas the performance
remains similar to that of BERT-based models. Experimental results show that the number
of model parameters is reduced by up to 99%, and the inference time is improved by up to
12.3 times.

Table 4 Efficiency comparison among models’ number of parameters, accuracy and inference time on
different datasets

Model Category Parameters NCBI-d BC5CDR MedMentions

Acc Time Acc Time Acc Time

CPU GPU GPU GPU

BERT(base) BERT based model 110M 88.7 443s 83s – – – –

SAPBERT BERT based model 110M 92.3 534s 58s 95.0 342s 50.4 6269s

Bhowmik et al. BERT based model 110M – – – 80.7 72s 68.4 1832s

Chen et al. CNN 4.6M 89.6 38s 22s – – – –

Lai et al. CNN init. w/ PubMedBERT 1.7M 92.4 33s 18s 95.1 90s 53.5 1565s

Models are grouped by their backbone architectures
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Bhowmik et al. [87] proposed using a dual encoder to perform candidate-entity genera-
tion and entity disambiguation through a single model in an end-to-end EL paradigm. The
model completes EL with only one document traversal, and the training process is three
times more efficient than other models with the same amount of parameters. Additionally,
the model can compare mention with all entities in the knowledge base during the infer-
ence phase, thereby saving time in candidate-entity generation and improving the inference
speed by up to 25 times compared with the baseline approach.

Ye et al. [88] consider that Pre-trained Language Models cannot well recall rich fac-
tual knowledge of entities exhibited in large-scale corpora, especially those rare entities.
They build a simple but effective Pluggable Entity Lookup Table (PELT) by aggregating the
entity’s output representations of multiple occurrences in the corpora. This method merely
consumes 0.2% – 5% pre-computation compared with previous works, and it also supports
the vocabulary from biomedical publication.

4 Datasets and performance evaluation

In Section 1.3, we introduce the characteristics of three datasets commonly used in the
biomedical field, including the corpora of biomedical literature, social-media medical texts,
and disease and clinical records. They differ significantly from one another and lead to
different challenges. In this section, we introduce six representative datasets and evaluate
the results of different models on related datasets.

4.1 Datasets

According to different corpus sources, we classify the datasets commonly used for BM-
EL tasks into the following types: biomedical literature, EMRs, social media datasets, etc.
These corpora have various text features. For example, literature has more complex proper
nouns, more abbreviations in electronic medical records, and more colloquial expressions in
social media data. We summarize the statistical information of different datasets in Table 5
and introduce their details as follows.

MedMentions dataset Constructed by Mohan and Li [76]. It is one of the largest BM-
EL datasets available, and includes 4392 English abstracts from PubMed with contains
352,496 mentions. Each mention is linked to a unique entity in the UMLS knowledge base.
Researchers usually use the St21pv subset, including fewer mentions, CUIs, and a total
of 21 semantic types of entities. For the partitioning of the dataset, researchers follow the
official 60%/20%/20% ratio to obtain the train/dev/test set.

Biocreative V CDR dataset Constructed by Li et al. [89]and is widely used in Named
Entity Recognition and EL tasks. It is a corpus of the biomedical literature derived from
1500 English language articles in PubMed, containing 4409 annotated chemicals and 5818
annotated disease entities. All the mentions in the dataset are linked to MeSH (a subset of
UMLS). The articles are equally distributed into train/dev/test sets.

NCBI disease corpus Constructed by Dogan et al. [90] It is an extensively used entity-
linking dataset obtained from biomedical literature. The dataset contains 793 abstracts of
the biomedical literature, where each mention is linked to MEDIC ontology [91]. Notably,

2612 World Wide Web (2023) 26:2593–2622



Ta
bl
e
5

St
at

is
tic

al
in

fo
rm

at
io

n
of

di
ff

er
en

tB
M

-E
L

da
ta

se
ts

D
at

as
et

C
or

pu
s

Ty
pe

Y
ea

r
D

oc
um

en
ts

#
M

en
tio

ns
U

ni
qu

e
E

nt
iti

es
K

B
#

E
nt

iti
es

M
ed

M
en

tio
ns

Pu
bM

ed
A

bs
tr

ac
t

20
19

4,
39

2
35

2,
49

6/
20

3,
28

2a
34

,7
24

/2
5,

41
9a

U
M

L
S

20
17

3,
27

1,
12

4

B
C

5C
D

R
Pu

bM
ed

A
rt

ic
le

20
16

1,
50

0
15

,9
35

/1
2,

85
0b

9,
14

9
M

eS
H

c
4,

40
9/

5,
81

8b

N
C

B
I

Pu
bM

ed
A

bs
tr

ac
t

20
14

79
3

6,
89

2
79

0
M

E
D

IC
d

11
,9

15

Sh
A

R
E

/C
L

E
F

E
M

R
20

13
29

8
11

,1
67

e
–

SN
O

M
E

D
-C

T
88

,1
40

C
O

M
E

TA
So

ci
al

m
ed

ia
20

20
–

19
,9

11
7,

64
8

SN
O

M
E

D
-C

T
–

A
sk

A
Pa

tie
nt

So
ci

al
m

ed
ia

20
16

–
8,

66
2f

–
SN

O
M

E
D

-C
T

/A
M

T
1,

03
6

a T
he

fo
rm

is
FU

L
L

se
t/S

T
21

pv
su

bs
et

b
T

he
fo

rm
is

B
C

5C
D

R
-C

he
m

ic
al

/B
C

5C
D

R
-D

is
ea

se
c M

eS
H

is
a

su
bs

et
of

U
ni

fi
ed

M
ed

ic
al

L
an

gu
ag

e
Sy

st
em

d
M

E
D

IC
is

a
co

m
bi

na
tio

n
of

M
es

h
de

sc
ri

pt
or

an
d

O
M

IM
id

en
tif

ie
r

e A
bo

ut
30

%
ar

e
N

IL
(u

nl
in

ka
bl

e)
f It

re
fe

rs
to

to
ta

lp
hr

as
es

in
th

e
da

ta
se

t
B

ol
d

en
tr

ie
s

re
pr

es
en

tt
he

be
st

-p
er

fo
rm

in
g

m
od

el
s

in
th

e
sa

m
e

ca
te

go
ry

2613World Wide Web (2023) 26:2593–2622



in the NCBI dataset, each annotation mention is linked to an entity in the knowledge base.
A typical dataset split division is 593/100/100 [56].

ShARe/CLEF eHealth Challenge corpus Constructed by Pradhan et al. [92]. Unlike the
datasets mentioned above, ShARe/CLEF is an electronic medical-record dataset containing
298 clinical reports. In each report, the disorder mention is linked to the corresponding
entity in the SNOMED-CT knowledge base. If no corresponding entity exists, it is labeled
as “CUI-less” (about 28.2% in the training set and 32.7% in the test set [86]). The dataset is
separated into training (199) and test (99) subsets [22].

COMETA and AskAPatient COMETA [93] and AskAPatient [13] are datasets obtained
from social media and forums. More types of entity-linking datasets in the biomedical
domain are attracting researchers’ interest. Unlike English literature and electronic medical-
record datasets, as the general public does not have a rich professional background, their
descriptions are relatively vague and imprecise. Their language styles are also relatively
uncritical, posing new challenges for BM-EL models.

4.2 Evaluationmetrics

The most intuitive way to evaluate an EL model is the proportion of mentions correctly
linked to the corresponding entity, which is the Precision (P). We also need to consider the
performance of candidate-entity generation, so we introduce the metric of entity Recall (R).
We consider these two metrics together and calculate the F1 value to evaluate the model’s
overall performance.

We denote M as the set of all mentions, Mc as the set of mentions correctly linked to
the entity, ε as all generated candidate entity sets, εc as candidate entity sets containing the
correct entity. We define the above-mentioned metrics formally as follows.

Precision = | Mc |
| M | (1)

Recall = | εc |
| ε | (2)

F1 = 2 · Precision · Recall

P recision + Recall
(3)

where | M | represents the item number of a set M, vice versa.
For models that consider named-entity recognition and entity disambiguation, the F1

metric provides an excellent overall picture of the model’s performance. Researchers usually
use the Accuracy metric for models that consider only entity disambiguation. It is calculated
in the same way as Precision.

Accuracy = | Mc |
| M | (4)

4.3 Performance analysis

We present a series of representative BM-EL methods and collect experimental results from
the original papers in Section 4.1, and summarized in Table 6.

As shown in Table 6, the SOTA performance is found to be achieved on almost all
datasets for the DL-based approach compared with the rule-based and ML based methods,
which proves that the DL technique works very well for the medical EL task. Specifically,
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Table 6 Reported results for BM-EL evaluation

ShARe/CLEF BC5CDR NCBI MedMentionsa

F1 Acc F1 Acc F1 Acc Acc MRR

Leaman et al. [18] – – – – 0.782 – – –

Li et al. [89] 0.903 – – – – 0.861 – –

Li et al. [19] 0.903 – – – – 0.861 – –

Liu et al. [82] – – – 0.77 – – – –

Murty et al. [38] – – – – – – –/0.754b –/0.597

Luo et al. [31] 0.898 – – – – – – –

Zhao et al. [35] – – 0.892 – 0.882 – – –

Mondal et al. [39] – – – – – 0.900 – –

Wright et al. [94] – – 0.834 0.88 0.84 0.878 – –

Chen et al. [86] – – – – – 0.898 – –

Schumacher et al. [32] 0.700 0.78 – – – – – –

Sung et al. [56] – – – 0.93 – 0.911 – –

Angell et al. [41] – – – – – – –/0.487 –/0.781

Vashishth et al. [55] – – 0.026c – 0.874 – 0.100c –

Wiatrak et al. [20] – – 0.639 0.92 – – 0.443/0.415 0.682/0.764

Vretinaris et al. [42] 0.825 0.88 0.874 – 0.874 0.924 – –

Varma et al. [95] – – – 0.92 – – – –/0.748

Yuan et al. [15] – – – – 0.891 – – –

Lai et al. [84] – – – 0.95c – 0.924 – –

Chen et al. [86] 0.904 – – – – 0.896 – –

Bhowmik et al. [87] – – 0.752 – – – 0.564/– –

Abdurxit et al. [96] – – – – – 0.913 – –

aThe form is FULL set/Subset
bThe dataset here is a subset of a pre-release MedMentions version, which is different from the other models
cNot available in the original paper. The result is calculated by the author manually through other
reported results
Bold entries represent the best-performing models in the same category

Vretinaris et al. [42] achieves the best results on the ShARe/CLEF and NCBI datasets, and
owns the leadership on the BC5CDR dataset, proving that applying graph neural networks
can collectively learn the contextual information and structural interdependence across men-
tions and also capture the unique and informative contextual information of entities in a
medical knowledge base. Zhao et al. [35] achieves the best results on the BC5CDR dataset
and owns the leadership on the NCBI dataset, showing that the joint modeling of medical
named-entity recognition and normalization has advantages over pipeline implementation
owing to their mutually beneficial relationship. Owing to the selection of the backbone net-
work and the introduction of more high-quality features, Chen et al. [86], Lai et al. [84]
maintain a high level of model performance despite the significant improvement in model
inference speed and reduction in model size, which can bring comparative advantages to the
system deployment and application.

As shown in Table 7, the generative approach significantly outperforms other methods in
terms of recall, and Yuan et al. [15] established the most muscular performing model so far.
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Table 7 Reported Recall@1 results comparison between Generative EL and Traditional EL methods

MedMentions BC5CDR NCBI

Leaman et al. [18] – – 0.763

Wright et al. [94] – 0.805 0.818

Angell et al. [41] 0.475 – –

Vashishth et al. [55] 0.053 0.013 0.065

Wiatrak et al. [20] 0.4237 0.6291 –

Bhowmik et al. [87] 0.564 0.744

Vretinaris et al. [42] – 0.881 0.889

Yuan et al. [15] – 0.933 0.919
Yuan et al. [16] 0.7178 0.9326 0.8990

Bold entries represent the best-performing models in the same category

This model indicates that the self-regression-based BM-EL method can generate candidate
entities more effectively, and the combination of synonym-aware fine tuning can accomplish
entity disambiguation well. However, seq2seq EL models require heavier computational
resources during training. The generative approach is still in the exploration stage in BM-EL
tasks. It is a valuable research direction to reduce the model size and computational-resource
requirements while maintaining the strong performance of generative models.

Furthermore, no optimum EL systems can perform well on all datasets owing to the
varied characteristics of different biomedical datasets, such as clinical document length and
a number of entities mentioned per document. For a given dataset linked by entities, we
should use suitable models to obtain advanced results according to the data characteristics.

5 Conclusion and future directions

In this survey, we summarize and review the recently proposed BM-EL models. We first
discuss BM-EL from the perspective of technology development and technology path.
Then, we systematically review the current representative BM-EL methods in each category
above. Lastly, we summarize commonly used BM-EL datasets by different source cor-
pora types, compare the reported results of the different models under various datasets, and
present results analysis. We believe that numerous barriers need to be overcome, and much
space for future improvement exists. Below, we summarize the limitations and shortcomings
of existing BM-EL methods and discuss promising future research directions.

1. Weak supervision/NO supervision EL: Traditional supervised models require a large
amount of already labeled data for training, which is costly for clinical medical data.
To tackle this problem, weak supervision [29, 30] is a potential approach, which is an
intermediate learning approach between supervised and unsupervised that uses heuris-
tics, knowledge base, crowdsourcing, and other sources to automatically create labeled
training data to reduce the burden and cost of labeling training data. Dong et al. [97]
proposed an ontology-based and weakly supervised approach for rare-disease pheno-
typing from clinical notes and achieved the optimum result in extracting rare-disease
UMLS phenotypes from MIMIC-III discharge summaries. This finding may suggest
that a study can be conducted to learn how to complete tasks using small sample data
or weakly supervised data using weakly supervised or unsupervised methods. Du et al.
[98] consider supervision of entity mention’s boundary as unnecessary for applications
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like semantic search engines and chatbots, which only utilize the information from the
set of entities. Their results indicate that mention-aware models and mention-agnostic
models achieve comparable performance under a new-performed evaluation formula-
tion. In biomedical domain, several applications focus less on mention-span, and extract
semantic information mainly from the set of entities. Adapting this method might be
helpful for these downstream tasks, and could be a perspective of future work.

2. Multisource heterogeneous text data: Biomedical text corpora originate from mul-
tiple data sources and contain diverse structured and unstructured forms of data.
Currently, most BM-EL systems focus on how to detect entity mentions from unstruc-
tured documents and map them to the knowledge base, e.g., biomedical literature or
EMRs. However, biomedical data also has data types such as tables and lists in the
hospital’s electronic health system. Different types of data have different characteris-
tics, some detailed data such as tables are semistructured texts with almost no textual
context. Only a few people have focused on the task of BM-EL with structured or
semistructured data. Therefore, it is an interesting direction of future work to develop
specific techniques to handle connected entities.

3. Model robustness and efficiency: Improving the EL model’s robustness and efficiency
is receiving significant attention. For BM-EL, robustness means achieving consis-
tent performance over various datasets. For example, consistency can be maintained
across different textual structures, such as social-media data, clinical texts, or medical
literature. Furthermore, most works on BM-EL lack an analysis of computational com-
plexity. However, efficiency and scalability are essential for real-time and large-scale
applications. Although Lai et al. [84] and Chen et al. [86] aimed to determine how to
improve the efficiency of EL tasks, they did not perform tests on large datasets. There-
fore, an essential direction for future research is to investigate the design of systems
that substantially improve the efficiency and scalability of BM-EL systems while main-
taining high accuracy and precision. Ayoola et al. [99] propose an efficient end-to-end
model, completing Named Entity Recognition, Entity Typing and Entity Disambigua-
tion in only one pass on input documents on large-scale KGs like Wikidata. Their model
is 60x faster than previous systems. In addition to aforementioned research perspec-
tives, Dong et al. [100] propose a novel method using cache embedding table to reduce
communication cost during distributed knowledge graph embedding training process.
Adapting these methods to biomedical domain, especially on large-scale or distributed
Biomedical KGs, might be helpful on solving the problem of high computational costs.

We hope that this survey demonstrates the current status and limitations of existing
BM-EL research and provide insight for researches to conduct in-depth research in this area.
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