
Towards Effective Recommendation: Neural
Networks and Adaptive Learning

Chen Ma

School of Computer Science,
McGill University, Montreal, Canada

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

DOCTOR of PHILOSOPHY

July 2021

2021/07/01



i

Abstract

With the development of Internet services, Internet users can easily access a large number of

online products and applications. Although this growth provides users with more available

choices, it is also difficult for users to pick up one of the most favorite items out of plenty

of candidates. To reduce information overload as well as satisfy the diverse needs of users,

personalized recommender systems come into being and play more and more important

roles in modern society. In particular, these systems can provide personalized experiences,

serve huge service demands, and bring direct benefits to both users and recommendation

service providers.

However, recommendation models still face several challenges and prevent them from

achieving satisfactory services. Specifically, these challenges include the difficulty of mod-

eling user-item interactions from the sparse data, the hardship of incorporating auxiliary

information from other information sources, the intricacy of capturing the user short-term

interest from the item sequential dynamics, and the hardness of conducting the adaptive

hyper-parameter learning according to different users or items.

In this thesis, we propose dedicated models to tackle the aforementioned challenges.

First, to model the complex interactions between users and Point-of-Interests (POIs) in

location-based recommender systems, a novel autoencoder-based model is proposed to learn

the nonlinear user-POI relations, which consists of a self-attentive encoder and a neighbor-

aware decoder. The self-attentive encoder adaptively distinguishes users’ preferences on

checked-in POIs; the neighbor-aware decoder incorporates POIs’ geographical influence to

make user reachability higher on unvisited neighbors of checked-in POIs. Second, to ef-

fectively incorporate the content auxiliary information from the item description, a gated

autoencoder with the word- and neighbor-attention mechanism is proposed. The model

learns items’ hidden representations from ratings and contents in a gated manner. More-

over, the model also captures items’ informative words and representative neighbors by

word- and neighbor-attention modules, respectively. Third, to model the user preference

transition with the temporal dynamics, a hierarchical gating network with an item-item

product module is proposed for the sequential recommendation task. The model adopts a

feature gating module and an instance gating module to control what item features can be

passed to downstream layers, where informative latent features and representative items

can be identified. Fourth, to conduct the adaptive hyper-parameter learning, an adaptive
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margin generation scheme is proposed to generate the margins regarding different train-

ing triplets in the margin ranking loss function, where a bilevel optimization framework is

adopted to alternatively update the model parameters as well as the margin values.

To demonstrate the effectiveness of the aforementioned models, a number of publicly

available datasets and benchmarks with many state-of-the-art methods are utilized to vali-

date the performance of proposed models. The evaluation results verify that our proposed

models achieve better performance than that of the state-of-the-art methods. The con-

tribution of the proposed component in each model is demonstrated in detailed ablation

analysis.



iii

Abrégé

Avec le développement des services Internet, les internautes peuvent facilement accéder à

un grand nombre de produits et d’applications en ligne. Bien que cette croissance offre aux

utilisateurs un plus grand nombre de choix disponibles, il est également difficile pour eux

de choisir un article préféré parmi une multitude de candidats. Afin de réduire la surcharge

d’informations et de satisfaire les divers besoins des utilisateurs, les systèmes de recom-

mandation personnalisés voient le jour et jouent un rôle de plus en plus important dans

la société moderne. En particulier, ces systèmes peuvent fournir des expériences personna-

lisées, répondre à d’énormes demandes de services et apporter des avantages directs à la

fois aux utilisateurs et aux fournisseurs de services de recommandation.

Cependant, les modèles de recommandation sont toujours confrontés à plusieurs défis qui

les empêchent de fournir des services satisfaisants. Plus précisément, ces défis comprennent

la difficulté de modéliser les interactions entre l’utilisateur et l’article à partir de données

éparses, la difficulté d’incorporer des informations auxiliaires provenant d’autres sources

d’information, la complexité de capturer l’intérêt à court terme de l’utilisateur à partir de

la dynamique séquentielle de l’article et la difficulté d’effectuer l’apprentissage adaptatif

des hyperparamètres en fonction des différents utilisateurs ou articles.

Dans cette thèse, nous proposons des modèles spécifiques pour relever les défis susmen-

tionnés. Premièrement, pour modéliser les interactions complexes entre les utilisateurs et

les points d’intérêt (POI) dans les systèmes de recommandation basés sur la localisation,

un nouveau modèle basé sur un encodeur automatique est proposé pour apprendre les re-

lations non linéaires entre utilisateur-POI, qui consiste en un encodeur auto-attentif et un

décodeur sensible au voisinage. Le codeur auto-attentif distingue de manière adaptative

les préférences des utilisateurs sur les POI enregistrés ; le décodeur tenant compte des voi-

sins incorpore l’influence géographique des POI pour rendre l’accessibilité de l’utilisateur

plus élevée sur les voisins non visités des POI enregistrés. Deuxièmement, pour incorpo-

rer efficacement les informations auxiliaires du contenu de la description de l’article, nous

proposons un auto-codeur à déclenchement avec le mécanisme d’attention aux mots et aux

voisins. Le modèle apprend les représentations cachées des articles à partir des évaluations

et du contenu d’une manière déclenchée. De plus, le modèle capture également les mots

informatifs des articles et les voisins représentatifs par des modules d’attention aux mots

et aux voisins, respectivement. Troisièmement, pour modéliser la transition des préférences
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de l’utilisateur avec la dynamique temporelle, un réseau de déclenchement hiérarchique

avec un module de produit article-article est proposé pour la tâche de recommandation

séquentielle. Le modèle adopte un module de déclenchement de caractéristiques et un

module de déclenchement d’instances pour contrôler les caractéristiques des articles qui

peuvent être transmises aux couches en aval, où les caractéristiques latentes informatives

et les articles représentatifs peuvent être identifiés. Quatrièmement, pour effectuer l’ap-

prentissage adaptatif des hyperparamètres, un schéma de génération de marge adaptative

est proposé pour générer les marges concernant différents triplets d’entrâınement dans la

fonction de perte de classement de marge, où un cadre d’optimisation à deux niveaux est

adopté pour mettre à jour alternativement les paramètres du modèle ainsi que les valeurs

de marge.

Pour démontrer l’efficacité des modèles susmentionnés, nous avons utilisé un certain

nombre d’ensembles de données et de points de référence accessibles au public, avec de nom-

breuses méthodes de pointe pour valider la performance des modèles proposés. Les résultats

de l’évaluation montrent que les modèles que nous proposons obtiennent de meilleures per-

formances que celles des méthodes de pointe. La contribution du composant proposé dans

chaque modèle est démontrée dans une analyse d’ablation détaillée.
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Chapter 1

Introduction

With the rapid growth of Internet services and mobile devices, it has been more convenient

to access amounts of online products and multimedia contents, such as movies and articles.

For instance, Amazon sells more than 12 million products1 and Yelp has 4.9 million local

businesses2. Although this growth allows users to have multiple choices, it has also made it

more difficult to select one of the user’s most preferred items out of thousands of candidates.

For example, users who like to watch movies may feel difficult to decide which movie to

watch when there are thousands of selections; users who are gourmet eaters may feel hard

to discover new restaurants tailored to their flavors.

The above needs facilitate a promising and practical service—personalized recommender

systems. These systems are becoming increasingly essential, serving a potentially huge

service demand, and bringing significant benefits to at least two parties: (i) help users

easily discover products that they are interested in, and (ii) create opportunities for product

providers to increase the revenue. Due to the ability to provide personalized services

and bring benefits to service providers, recommender systems are extensively deployed in

Internet services nowadays. For example, around 80% of watching actions in Netflix3 and

35% of sales in Amazon4 are brought by their recommendation engines.

To enable personalized recommendation services, the collection of user behaviors on

items/products is of the essence. Generally, a recommender system includes three main

1https://www.bigcommerce.com/blog/amazon-statistics/
2https://expandedramblings.com/index.php/yelp-statistics/
3https://www.wired.co.uk
4https://martechtoday.com/roi-recommendation-engines-marketing-205787

https://www.bigcommerce.com/blog/amazon-statistics/
https://expandedramblings.com/index.php/yelp-statistics/
https://www.wired.co.uk
https://martechtoday.com/roi-recommendation-engines-marketing-205787
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elements: users, items, and user-item interactions. Users interact with items by giving

ratings on items such as five stars on Netflix or performing multiple actions on items,

e.g., browsing or purchasing on Amazon and check-ins on Yelp. With the user-provided

feedback, user’s preferences can be learned via various techniques [1–7], and items that

users are interested in can be recommended.

1.1 Challenges

Although the personalized recommendation is extensively studied and investigated in the

past twenty years, it still faces several challenges leading to unsatisfactory services. The

causes of unsatisfactory performance are brought by the inherent sparsity of data, the

hardship of modeling user-item interactions, the difficulty of incorporating auxiliary in-

formation, the intricacy of capturing the user behavior dynamics, the tedious need for

hyper-parameter tuning, etc. The detailed illustrations of these challenges are summarized

as follows:

• Modeling Complex Interactions. The user-item interaction modeling lies at the core

of recommender systems. The way of how to model the user-item interaction largely

affects the recommendation performance. Many recommendation models only capture

the linear relationship between users and items while neglecting the intricacy and

non-linearity of real-life historical interactions. For example, matrix factorization-

based methods [8]—the most commonly used recommendation model—adopt the

inner product between the user and item latent factors to model user-item interactions

which are essentially linear models [9].

• Incorporating Auxiliary Information. Auxiliary information, such as genres, titles,

and plots of movies, is highly useful for understanding user preference. However, the

representation of auxiliary information is a non-trivial task, since most of the real-

world data like texts are not directly represented by numerical values, which need

to be transformed into model-executable formats. Therefore, how to represent the

auxiliary information of users or items and integrate them into the user preference

learning is significant for recommender systems.

• Capturing Temporal Dynamics. The user interest may dynamically shift from time to

time. The chronological order of user-item interactions is the main feature to reflect
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the transition of user interests, where the items that users will interact with may

largely depend on those items that users just accessed recently. Thus, it is crucial

to capture the user interest transition and take advantage of the sequential dynamics

for predicting user actions in the near future.

• Learning Adaptive Hyper-parameters. Hyper-parameters are one of the most impor-

tant factors that have an effect on the machine learning model. Typically, the hyper-

parameter is manually selected and keeps fixed in the whole training process. While

some recent studies show that the hyper-parameter can be learned adaptively along

with other learnable parameters in the model training [10]. In the recommendation

scenario, some hyper-parameters can be further cast into a personalized/adaptive

manner [11,12], where each user or item has one specific hyper-parameter instead of

sharing with all other users or items. This makes the model have more flexibilities

and yields performance improvement in many previous works [11,12]. Therefore, how

to adaptively learn the values of these personalized hyper-parameters is not trivial.

1.2 Motivations

To solve the above challenges, more powerful methods are required to capture the intricate

characteristics and complex structures in the input data. Recently, due to the ability to

represent non-linear and complex data, (deep) neural networks have been a great success

in many domains, such as computer vision [13, 14], natural language processing [15, 16]

and graph learning [17,18], and bring more opportunities to reshape the conventional rec-

ommendation architectures. Compared to traditional hand-designed feature-based models,

these end-to-end differentiable neural models have demonstrated promising performance

in representation learning for high-dimensional and large-scale data, sequence modeling,

and relational learning. In this thesis, we hope to address the aforementioned challenges

by leveraging the strengths of (deep) neural networks or adopting the techniques that can

improve the performance of neural networks:

• Universal Approximation. One of the most striking facts about neural networks is that

they can approximate any function, and there is guaranteed to be a neural network

no matter what the function is [19]. In the real world, it is very likely that millions

of users/items dwell in the recommender system, such a large scale of data makes
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the user-item interaction complex and intricate. Many conventional methods such as

matrix factorization [20] and factorization machines [21] are essentially linear models.

For instance, matrix factorization-based methods apply the inner product to linearly

combine the latent factors of users and items as the prediction score. The linear

assumption, the basis of many traditional recommendation models, is oversimplified

and will greatly limit their modeling expressiveness [9,22]. In contrast, (deep) neural

networks have the ability to approximate arbitrary functions, which are a good fit to

model complex user-item interactions.

• Unstructured Data Representation. Generally, data can be categorized into two types:

structured data and unstructured data. Structured data is comprised of clearly de-

fined data types whose pattern makes them easily searchable such as the database of

student’s marksheet; while unstructured data has no pre-defined format or organiza-

tion, making it much more difficult to collect, process, and analyze, including formats

like audio, video, and social media postings. In a recommender system, rather than

solely rating items, users can also interact with items via other means like writing re-

views or posting pictures. These unstructured auxiliary data can be highly helpful for

inferring users’ preferences. Due to the ability to effectively represent unstructured

data, (deep) neural networks have advantages of learning the auxiliary information in

recommender systems: (i) they do not require the explicit feature engineering, as they

are capable of executing feature engineering on their own and searching for features

that correlate and combining them to enable faster learning; (ii) unstructured data

is easily transformed into real-value representations, and heterogeneous information

such as texts and pictures can be comfortably integrated. Thanks to these two mer-

its, the auxiliary information can be effectively modeled and incorporated by (deep)

neural networks in recommender systems.

• Sequence Learning. Many types of data in the real world are sequential, e.g., speech,

DNA, stock prices, and customer action histories. (Deep) neural networks have shown

significant performance improvement on a number of sequence learning tasks such as

speech recognition [23] and machine translation [24]. In particular, recurrent neural

networks (RNNs) and convolutional neural networks (CNNs) are two important cor-

nerstones that enable the powerful learning of sequences. These advances in sequence

learning also facilitate the modeling of user preference shifts in recommender sys-
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tems [6]. In the Internet service, users access the products or items in a chronological

order, where the sequential semantics makes a difference for predicting users’ future

behaviors. That is, the items a user will interact with may be closely relevant to those

items he/she just accessed. Thus, these (deep) neural networks tailored to sequential

data can be a good means to capture the future behaviors of users.

• Automated Hyper-parameter Learning. The hyper-parameter is a crucial element in

a machine learning or recommendation model, where the values of hyper-parameters

can significantly influence the quality of models. Typically, hyper-parameters are

tuned manually and it takes a long time to find reasonable ones since they waste time

evaluating unpromising areas of the search space. With the advance of deep learning,

hyper-parameter tuning techniques [25] are largely developed to find optimal hyper-

parameters in less time. In the recommendation scenario, the hyper-parameter can

be further customized into a fine-grained manner since distinct users and items dwell

in the system. Different users or items may better have their own hyper-parameters

to fully unleash the potential of a recommendation model. Existing recommenda-

tion models [11, 12] have demonstrated performance gain by doing so. Thus, the

hyper-parameter tuning techniques need to be enhanced to learn the personalized

and adaptive hyper-parameters in the recommendation model.

1.3 Contributions

To tackle the challenges mentioned in Section 1.1, we investigate and design effective neural

recommendation models powered by the merits of (deep) neural networks. In particular,

neural networks are utilized to model the complex and non-linear user-item interactions,

integrate useful user/item auxiliary information, capture the sequential dynamics in the

user behaviors, and generate adaptive hyper-parameter values. To summarize, the major

contributions of this thesis are listed as follows:

• In Chapter 4, we propose an autoencoder-based model to model the complex user-

POI interaction for Point-of-Interest (POI) recommendation [26], which consists of

a self-attentive encoder and a neighbor-aware decoder. The self-attentive encoder

adaptively discriminates users’ preferences on checked-in POIs. The neighbor-aware

decoder incorporates POIs’ geographical influence to make user reachability higher



6 Introduction

on unvisited neighbors of checked-in POIs.

• In Chapter 5, we propose a gated attentive-autoencoder to effectively incorporate the

content auxiliary information for the content-aware recommendation [27]. The model

consists of three modules: a word-attention module, a neighbor-attention module,

and a neural gating layer. The word-attention module selects informative words by

assigning larger attention weights. The neighbor-attention module distinguishes the

neighboring items of an item in a weighted manner. The neural gating layer smoothly

fuses item hidden representations from heterogeneous sources.

• In Chapter 6, we propose a hierarchical gating network to model the user interest

transition for the sequential recommendation task [28]. The model is composed of

three modules: a feature gating module, an instance gating module, and an item-item

product module. The feature gating and instance gating modules adaptively select

what item features can be passed to the downstream layers. The item-item product

module explicitly captures the relations between the items that users accessed in the

past and the items users will access in the near future.

• In Chapter 7, we propose an adaptive margin (a hyper-parameter in the margin rank-

ing loss) learning module in a distance-based recommendation model [29]. A bilevel

optimization scheme is proposed to alternatively update the margin-related param-

eters as well as the parameters of recommendation models. By incorporating the

adaptive margin module, our model can generate fine-grained margins for the training

triples during the training procedure. To explicitly capture the user-user/item-item

relations, we adopt two additional margin ranking losses with adaptive margins to

force similar user and item pairs to map closer together in the latent space.

1.4 Statement of Author Contribution

In the following, I provide a contribution statement of co-authors regarding Chapters 4, 5,

6, and 7.

Chapter 4 is based on the work [26] that is published in Proceedings of the 27th ACM

International Conference on Information and Knowledge Management (CIKM 2018). I

proposed the idea, implemented the model, and wrote the paper draft. Yingxue Zhang
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paper. All authors participated in the discussion of the model results.

Chapter 5 is based on the work [27] that is published in Proceedings of the 12th ACM

International Conference on Web Search and Data Mining (WSDM 2019). I proposed

the idea, implemented the model, and wrote the paper draft. Peng Kang helped run three

baseline models and draw the model design figure. Dr. Bin Wu gave constructive comments

to improve the paper. Prof. Xue Liu and Dr. Qinglong Wang helped revise the paper. All

authors participated in the discussion of the model results.

Chapter 6 is based on the work [28] that is published in Proceedings of the 25th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2019). I proposed

the idea, implemented the model, and wrote the paper draft. Peng Kang helped run two

baseline models and draw the illustrative figures. Prof. Xue Liu helped revise the paper.

All authors participated in the discussion of the model results.

Chapter 7 is based on the work [29] that is published in Proceedings of the 26th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2020). I proposed

the idea, implemented the model, and wrote the paper draft. Liheng Ma helped revise the

formulation of the bilevel optimization and draw the model design figures. Yingxue Zhang

and Dr. Ruiming Tang gave constructive suggestions to improve the paper quality. Prof.

Xue Liu and Prof. Mark Coates helped revise the paper. All authors participated in the

discussion of the model results.
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Chapter 2

Background of Recommender

Systems

In this chapter, we introduce the background of recommender systems, the problem settings

in the recommendation research community, the classical recommendation methods, and

the commonly-used evaluation metrics.

2.1 Overview

Thanks to the ability to provide personalized services and serve huge service demands,

recommender systems have become an essential component in all kinds of Internet appli-

cations. To make accurate recommendations, effective methods have been proposed. They

can be briefly divided into the following categories [30]:

• Collaborative filtering methods are based on the assumption that users who have

similar preferences in the past would also have similar preferences in the future, and

items are recommended to users based on the preferences other users have expressed

for those items. This kind of method generates recommendations using only infor-

mation about rating/interaction data for different users or items. By locating peer

users/items with a rating history similar to the current user or item, they generate

recommendations using this neighborhood.

• Content-based filtering methods are based on descriptions of items and profiles of

users’ preferences, where hand-crafted features (e.g., bag-of-words or term frequency-
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inverse document frequency) shall be extracted from the item description or user

profile. Then content-based filtering makes predictions regarding users’ preferences

or ratings, by identifying items with similar content or tailored to the user profile, on

the basis of the extracted item/user features.

• Hybrid methods are a combination of collaborative filtering and content-based filter-

ing, which benefit from their complementary advantages.

To learn the recommendation model, the user feedback on items is of the essence.

Generally, there are two kinds of user feedback: explicit feedback and implicit feedback.

Explicit feedback, such as 1 to 5 rating scales in Netflix, provides users with a mechanism

to unequivocally express their preferences on items. On the other hand, implicit feedback

does not directly reflect the interest of the user but it acts as a proxy for a user’s interest,

such as check-ins in Yelp and clicks in YouTube. Compared to explicit feedback, implicit

feedback is found in abundance and easy to collect, where it does not need any extra input

from the user.

2.2 Problem Setting

According to the types of user feedback that act as the supervised signal for the recommen-

dation model, there are two main tasks in the recommendation research domain: rating

prediction and item ranking. The rating prediction task always taking explicit feedback as

input aims at predicting to what extent a user would like a given item. The prediction

quality is typically measured by root mean square error (RMSE) or mean absolute error

(MAE). On the other hand, the item ranking task, also known as top-K recommendation,

directly aims at recommending the most valuable items for each user from all item candi-

dates based on implicit feedback. The prediction quality is measured by some of the metrics

in Section 2.4. Compared to the rating prediction task, the item ranking problem is more

practical and challenging [31], which more accords with the real-world recommendation

scenario. The detailed problem settings are introduced as follows.

2.2.1 Rating Prediction

The rating prediction task typically takes the user explicit feedback as input, i.e., users’

ratings on items. This task has focused mainly on predicting the rating values for those
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items that a user has deliberately chosen to rate. Formally, given the ratings in the dataset

Di = {ri,j1 , ri,j2 , ..., ri,j|Si|} for user i on items j1, j2, ..., j|Si|, then the recommendation model

is learned on the training set Si (Si ⊂ Di and Si 6= ∅ ) of each user, the recommendation

model needs to make the prediction r̂i,j for the item with a ground rating ri,j ∈ Ti in the

test set Ti (Si ∪ Ti = Di and Si ∩ Ti = ∅ ). Then the recommendation performance is

measured by the average prediction error (see Section 2.4) between ri,j and r̂i,j.

2.2.2 Item Ranking

The recommendation task considered in this thesis mainly works on the user implicit feed-

back, since it is easy to collect and is widely utilized in current recommender systems. For

each user i, the user preference data is represented by a set that includes the items she has

accessed, e.g., Di = {I1, ..., Ij, ..., I|Di|}, where Ij is an item index in the dataset. The item

ranking (top-K recommendation) task is formulated as: given the training item set Si, and

the non-empty test item set Ti (requiring that Si ∪ Ti = Di and Si ∩ Ti = ∅) of user i, the

model must recommend an ordered set of items Pi such that |Pi| ≤ K and Pi ∩ Si = ∅.
Then the recommendation quality is evaluated by a matching score (Section 2.4) between

Ti and Pi.

2.3 Classical Recommendation Methods

In the past twenty years, the research and industrial deployment of recommender systems

are largely developed. More and more Internet products are embracing personalized recom-

mendation services to better serve customers and potentially enhance revenue. During this

development, a number of effective models have been proposed and some of them have built

a firm foundation for the later evolution of recommender systems. Here, we briefly sum-

marize the classical methods of aforementioned collaborative filtering and content-based

filtering, which have a profound influence on later works.

2.3.1 Collaborative Filtering

Collaborative filtering (CF) is a class of methods that recommend items to users based

on the preferences other users have expressed for those items. It can be further divided

into memory-based and model-based categories. Memory-based methods, make preference
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predictions based on the entire collection of previously rated items by the users. This

approach utilizes user feedback data to compute the similarity between users or items,

then the recommendation is made according to those similar users or items. Whereas

model-based methods make use of the observed user feedback to learn a model, which is

then used for user preference prediction.

Memory-based Method

Specifically, there are two kinds of memory-based methods, namely, user-based CF and

item-based CF. Taking the user-based CF for example. Given a target user i, user-based

CF first computes the similarity wi,k between user i and another user k by some similarity

measurement such as cosine similarity. Then the predicted preference score of user i on

item j (item j is not accessed by user i) is computed:

r̂i,j =

∑
k wi,k · rk,j∑

k wi,k
, (2.1)

where rk,j represents the true score made by user k on item j, and r̂i,j represents the

predicted score. Item-based CF has a similar procedure with the user-based CF except that

item-based CF calculates the similarity between items. The item-based CF was successfully

deployed in the early stage of Amazon’s recommendation engine [32].

Model-based Method

Model-based methods discover the latent patterns that are able to reflect how user prefer-

ence is generated. This kind of method often achieves better performance than memory-

based methods by downgrading the effect of the data sparsity problem. Some of the most

successful realizations of model-based methods are based on matrix factorization [8], where

matrix factorization models the latent features underlying the interactions between users

and items. Generally, matrix factorization models map both users and items to a joint

latent space of dimensionality d. In the latent space, each user is represented by a latent

factor vector pi ∈ Rd, and the item is represented by qj ∈ Rd. The elements of pi measure

the extent of interests the user i has regarding the latent factors, while qj measures the

extent to which the item j possesses these factors. The resulting inner product, q>j · pi,
models the interaction between user i and item j which is the overall user preference score
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on the item:

r̂i,j = q>j · pi . (2.2)

Then the next question is how to learn the user and item latent factors. One typical

way to is to minimize the regularized squared error on the set of known ratings [8]:

min
pi,qj

∑
(i,j)∈D

(ri,j − q>j pi)
2 + λ (||pi||2 + ||qj||2) , (2.3)

where D is the set consisting of user-item pairs (i, j) for which ri,j is the observed rating or

feedback in the training set, λ is the parameter that controls the extent of regularization.

2.3.2 Content-based Filtering

Content-based filtering focuses on the content information of users/items rather than neigh-

boring users’ opinions or interests. This category of methods tries to recommend items that

have similar content with those the user has liked in the past. Explicit attributes or char-

acteristics should be extracted from the content of an item, such as the textual description

or other content sources like audio and image. Here, we introduce a representative example

of content-based filtering.

Given a number of items with text descriptions, these descriptions of items shall be

transformed into numerical features. For simplicity, here we adopt the term frequency–inverse

document frequency (TF-IDF) method to organize the word importance in each item’s de-

scription into a feature vector xj ∈ RN whereN is the number of all words in the corpus [33].

For each user i, we have a learnable weight vector wi ∈ RN to measure the user taste on

these words. Then the linear regression model for each user is built to predict the preference

scores of user i on item j:

min
wi

∑
(i,j)∈D

(ri,j −w>i xj)
2 + λ ||wi||2 , (2.4)

where w>i xj is the predicted user preference score of user i on item j.



2.4 Evaluation Metrics 13

2.4 Evaluation Metrics

The performance evaluation is an essential part of recommender systems. For different

tasks, i.e., rating prediction and item ranking (top-K recommendation), different evaluation

metrics are utilized.

2.4.1 Rating Prediction

Two widely used evaluation metrics for the rating prediction task is introduced as follows:

• RMSE, root mean square error, measures the differences between ratings predicted

by a model and the value observed. RMSE tends to penalize large errors as the error

term is squared.

• MAE, mean absolute error, is another common metric to evaluate the differences

between the predicted rating and the ground-truth by measuring the absolute differ-

ence.

Formally, these metrics are defined as:

RMSE =

√∑
i

∑
ri,j∈Ti (ri,j − r̂i,j)2

# of ratings
,

MAE =

∑
i

∑
ri,j∈Ti |ri,j − r̂i,j|

# of ratings
,

(2.5)

where | · | is the absolute value, Ti is the test set of user i.

2.4.2 Item Ranking

Here, we introduce four commonly used evaluation metrics to measure the item ranking per-

formance of recommendation models. For each user in the dataset, the model recommends

K items that the user has not interacted with before. These evaluation metrics compute the

extent of matching between recommended items and ground-truth items. These evaluation

metrics are:

• Precision@K, indicates what percentage of items among the top-K recommended

items would be viewed by users.
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• Recall@K, indicates what percentage of user’s preferred items can emerge in the top-K

recommended items.

• MAP@K, the mean average precision at K. Average precision is the average of preci-

sion values at all ranks (from 1 to K) where relevant items are found.

• NDCG@K, normalized discounted cumulative gain at K is a measure of item ranking

quality. The discounted cumulative gain (DCG) is a weighted sum of the relevancy

degree according to the ranked items. And the weight is a decreasing function of the

rank (position) of the item, and therefore called discounted [34].

Formally, these metrics are formulated as:

Precision@K =
1

M

M∑
i=1

prei(K) =
1

M

M∑
i=1

Pi ∩ Ti
K

,

Recall@K =
1

M

M∑
i=1

Pi ∩ Ti
|Ti|

,

MAP@K =
1

M

M∑
i=1

∑K
k=1 prei(k)× reli(k)

|Ti|
,

NDCG@K =
1

M

M∑
i=1

∑
j∈Ti

1

log2(ranki(j)+1)

IDCG
(

min(K, |Ti|)
) ,

IDCG(K) =
K∑
k=1

1

log2(k + 1)
,

(2.6)

where M is the number of users to evaluate, prei(K) is the Precision@K for user i, reli(k)

is an indicator function that equals to 1 if the k-th recommended item is in the test set Ti
otherwise equals to 0, and ranki(j) is the position of item j in the recommendation set Pi.
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Chapter 3

Related Work

In this chapter, we introduce the related work on (neural) recommender systems and the

recommendation scenario with different auxiliary information.

3.1 General Personalized Recommendation

In the real-world, the user implicit feedback [35], such as users’ clicking and check-in histo-

ries, widely exists in the Internet service. In many real-world recommendation scenarios, is

more ubiquitous and common than explicit feedback [36] such as users’ 5-star ratings. The

implicit feedback setting, typically associated with the item ranking task, is also called one-

class collaborative filtering (OCCF) [31]. It arises when only positive samples are available,

and potentially positive samples and negative samples are mixed together. To address this

general and challenging problem, many effective methods have been proposed.

3.1.1 Matrix Factorization-based Methods

Popularized by the Netflix Prize competition1, matrix factorization (MF) based methods

have become a prominent solution for the personalized recommendation [8]. In [20], Hu

et al. propose a weighted regularized matrix factorization (WRMF) model to treat all the

missing data as negative samples, while heuristically assigning confidence weights to positive

samples. This insightful design also sheds light on further studies like [26, 27]. Rendle et

al. adopt a different approach in [37], proposing a pair-wise ranking objective (Bayesian

1https://www.netflixprize.com/

https://www.netflixprize.com/
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Personalized Ranking) to model the pair-wise relationships between positive items and

negative items for each user, where the negative samples are randomly sampled from the

unobserved feedback. This ranking objective is both effective and efficient, which has been

widely adopted in many of the later works like [38, 39]. Ning et al. [40] propose a sparse

linear method—SLIM, which employs a sparse linear model in which the recommendation

score for a new item can be calculated as an aggregation of other items. Kabbur et al. [41]

present a factored item similarity-based method (FISM) for the top-K recommendation

problem. FISM learns the item similarities as the product of two matrices, allowing it to

generate high-quality recommendations even on sparse datasets. Furthermore, many MF

methods also consider the problem from the probabilistic perspective. Johnson et al. in [42]

propose a probabilistic model for matrix factorization—logistic matrix factorization, which

is highly parallelizable. In [35,43], Wang et al. and Li et al. apply the probabilistic matrix

factorization [44] to learn the user preference from the implicit feedback, where the user

and item latent factors are drawn from the Gaussian distribution. To allow unobserved

items to have varying degrees of importance, He et al. in [45] propose to weight the missing

data based on item popularity, demonstrating improved performance compared to WRMF.

3.1.2 Multi-layer Perceptron-based Methods

Due to their ability to learn more complex non-linear relationships between users and

items, (deep) neural networks have been a great success in the domain of recommender

systems. He et al. in [9] propose a neural network-based collaborative filtering model,

where a multi-layer perceptron is used to learn the non-linear user-item interactions. This

model is generic and many MF methods can be expressed and generalized under its frame-

work. In [46], (denoising) autoencoders are employed to learn the user or item hidden

representations from user implicit feedback. Autoencoder approaches can be shown to be

generalizations of many of the MF methods [46]. The application of autoencoders in the

recommendation model also inspires later works like [26, 27], which integrates a heuristic

weighting function to measure the importance of each item. Furthermore, conventional ma-

trix factorization and factorization machine methods benefit from the representation ability

of deep neural networks for learning either the user-item relationships or the interactions

with side information. In [47], Xue et al. propose an MF model with a neural network

architecture. Through the neural network architecture, the model projects users and items
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into low-dimensional vectors in a latent space. A customized loss function is designed to

train the model, where both explicit and implicit feedback are considered. In [48,49], Guo

et al. and Lian et al. equip the factorization machine [21] with a neural network structure.

As such, the model learns both high- and low-order feature interactions, as well as reduces

the manual feature engineering burden. Due to the ability to naturally integrate node

information and topological structure, graph neural networks (GNNs) are a great match

to integrate the relationship data within the recommender system. In [50], the user-item

interactions are represented as a bipartite graph, where the neighbors of a user are the

items she preferred and the neighbors of an item are the users who rated it. In [39,51], Sun

et al. also model the user-user and item-item relations via GNNs along with the user-item

interactions.

Recently, attention mechanism has demonstrated the effectiveness in various machine

learning tasks such as image captioning [52,53], document classification [54], and machine

translation [55, 56]. Researchers also adopt the attention mechanism on recommendation

tasks not only to capture the user-item interaction but also model the rich side information.

In [57], Pei et al. adopt an attention scheme to learn the attention scores of user and item

history in an interacting way, which is used to measure the dependencies between the user

and item dynamics in shaping user-item interactions. Wang et al. [58] propose a hybrid

attention model to incorporate both the model specialty factor and model timeline factor

into the attention network to strategically assign attention given each specific article. This

helps adaptively capture the change of editors’ selection criteria. In [59], Gong et al. adopt

an attention model to scan input microblogs and select trigger words. To incorporate a

trigger word mechanism, they propose a novel attention-based convolutional neural network

(CNN) architecture, which consists of a local attention channel and a global channel. Chen

et al. [60] propose item- and component-level attention mechanisms to model the implicit

feedback in the multimedia recommendation. In [61], Seo et al. propose to model user

preferences and item properties using CNNs with dual local and global attention. Specif-

ically, the local attention provides insight on a user’s preferences or an item’s properties,

while the global attention helps CNNs focus on the semantic meaning of the whole review

text. In [62], Tay et al. propose a multi-pointer attention mechanism to enhance the rating

prediction accuracy, which operates with a gumbel-softmax based pointer mechanism that

enables a differentiable neural architecture. This enables not only the most informative

reviews to be utilized for prediction but also a deeper word-level interaction. In [26], Ma
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et al. integrate the attention mechanism with the autoencoder to discriminate the user

preferences on users’ visited locations, which yields a fine-grained user preference learning.

And in [63], Chen et al. propose an attention-based review pooling mechanism is proposed

to select the important user reviews. In [64], Wang et al. propose a framework, namely

KGAT, which explicitly models the high-order connectivities of the knowledge graph in an

end-to-end fashion. The graph attention module [65] adaptively propagates the embeddings

from a node’s neighbors to update the node’s representation.

3.1.3 Distance-based Methods

Due to their capacity to measure the distance between users and items, distance-based

methods have been successfully applied in top-K recommendation. In [22], Hsieh et al.

propose to compute the Euclidean distance between users and items. Not only users’

preferences but also the user-user and item-item similarities are indirectly modeled for cap-

turing fine-grained user preferences. In [66], Tay et al. adopt an attention-based memory-

augmented neural architecture [67] that models the relationship between users and items

in metric space using latent relation vectors. In [68], Zhou et al. propose a metric learning-

based model that is augmented with the external memory and neural attention mecha-

nism, where the memory network stores the embeddings of different types of user-item

interactions. By doing this, it can capture the fine-grained user preference across various

interaction spaces. Different from [66], Park et al. in [69] apply a translation embedding

to capture more complex relations between users and items, where the translation embed-

ding is learned from the neighborhood information of users and items. In [70], He et al.

apply a distance metric to capture how the user interest shifts across sequential user-item

interactions. This model has wide connections with existing methods and demonstrates its

suitability for modeling third-order interactions between users, their previously consumed

item, and their next item. In [71], Li et al. propose to measure the trilateral relationship

from both the user-centric and item-centric perspectives and learn adaptive margins for

the central user and positive item. Benefiting by learning user and item embeddings in the

hyperbolic space, Tran et al. [72] explore the application of metric learning in the hyper-

bolic space for recommender systems, the model achieves better results than which in the

Euclidean space.
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3.2 Location-aware Recommendation

Recent years have witnessed the development and popularity of location-based services,

such as Yelp and Foursquare. In these services, users are able to share their check-ins and

opinions on Point-of-Interests (POIs), such as restaurants and shopping malls. The task

of POI recommendation is to provide personalized location recommendations to different

users. It plays an important role in providing better location-based services.

To make more accurate recommendations, researchers have incorporated geographical

information (influence) of locations into their proposed models [73–78]. There are several

ways to model the geographical influence. In particular, some researchers employ Gaus-

sian distribution to characterize user’s check-in activities. For example, Cho et al. [73]

apply a two-state Gaussian mixture to model the check-ins that close to users’ homes

or workplaces. Cheng et al. [75] propose a multi-center discovering algorithm to detect

user’s check-in centers. Then Gaussian distribution is built on each center, calculating

user check-in probabilities on unvisited locations together. On the other hand, researchers

also adopt kernel density estimation (KDE) to estimate user’s check-in activities. Ye et

al. [74] discover that user’s check-in behaviors are in a power-law distribution pattern. The

power-law pattern reveals two locations’ co-occurrence probability distribution over their

distance, and this discovery is also employed in [76, 79]. Besides, Liu et al. [78] exploit

geographical characteristics from location perspectives, which are modeled by two levels

of neighborhoods, i.e., instance-level and region-level. Furthermore, in [80], Zhao et al.

propose the geographically hierarchical pairwise ranking model, which follows an assump-

tion: the user prefers the visited POI than the unvisited neighboring POI, and prefers the

unvisited neighboring POI than the unvisited non-neighboring POI. In [81], Wang et al.

model the geographical influence between two POIs using three factors: the geo-influence

of POI, the geo-susceptibility of POI, and their physical distance. Geo-influence captures

POI’s capacity at exerting geographical influence to other POIs, and geo-susceptibility re-

flects POI’s propensity of being geographically influenced by other POIs. In [82], Zhou

et al. introduce the concepts of geographical preference and geographical influence which

are specifically learned for each user and POI to depict the fine-grained geographical effect

between them.
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3.3 Content-aware Recommendation

Content information can be one of the most important information sources to understand

user preferences. Due to the privacy issue, the user-specific data, e.g., age, gender, and

occupation, is hard to access. In contrast, a plethora of item information is publicly avail-

able online, such as movie plots on Netflix, which makes collecting item metadata have less

privacy concern. Therefore, making use of auxiliary item information is a feasible way to

improve recommendation performance.

Researchers incorporate the content features to help alleviate the sparseness and the

cold-start problem in the user-item interaction data. In some early works, McAuley et

al. [83] and Wang et al. [84] apply Latent Dirichlet Allocation (LDA) [85] to learn abstract

topics that occur in a collection of documents, which not only provides an interpretable

latent structure for users and items, but also form recommendations about both existing

and cold-start items. In recent years, deep learning models have demonstrated great power

for effective text representation learning. In [35, 86], Wang et al. and Zhang et al. utilize

the stacked denoising autoencoder (SDAE) on items’ bag-of-words to learn the item latent

representations, which allows a robust item content representation and tight coupling of

deep representation learning for the content information and collaborative filtering for the

ratings (feedback) matrix, respectively. Li et al. in [87] propose to combine probabilis-

tic matrix factorization with marginalized denoising autoencoders. And in [43], Li et al.

adopted a variational autoencoder to learn the latent representations from items’ content,

which is a Bayesian probabilistic generative model. It infers the stochastic distribution of

the latent variable under the content representation through an inference network, instead

of point estimates, and it leads to more robust performance. On the other hand, some

studies also incorporate contextual information for a better understanding of the text. For

example, in [88], the doc2vec model [89] is utilized to model the text information in user

reviews for the review embedding learning. The review text embedding is then integrated

with the item embedding from ratings by a neural network. And in [61,90,91], Kim et al.,

Seo et al., and Zheng et al. adopt convolution neural networks (CNNs), with max-pooling

and fully connected layers, to learn the item hidden representation from item’s sequence

of word embeddings, where words’ contextual information can be captured by the convo-

lutional filters and the sliding window strategy. In [63], Chen et al. apply an attention

model among the item content embeddings learned by the CNN to further distinguish the
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importance of the user reviews. In [92], Zhou et al. present a two-headed attention fusion

autoencoder model that leverages both user-generated reviews and implicit feedback to

make recommendations.

3.4 Sequential Recommendation

Accurately characterizing and learning users’ interests lies at the core of a personalized

recommender system. In real-world Internet services, users interact with items or products

chronologically and users’ interests are intrinsically dynamic and evolving, which are always

influenced by their historical behaviors. Typically, the user interest would be modeled

separately as long-term interests and short-term interests. Thus, how to effectively model

these two parts are significant in the sequential recommendation.

Some early sequential recommendation methods rely on item-item transition matrices to

capture the sequential patterns in the user interaction sequence. The Markov chain [93] is

a classical option to solve this problem. For example, Rendle et al. [94] propose to factorize

personalized Markov chains for capturing long-term preferences and short-term transitions.

He et al. [95] combines similarity-based models with high-order Markov chains to make

personalized sequential recommendations. In [70], the translation-based method is proposed

for sequential recommendation. Recently, benefited by the advantages of sequence learning

in natural language processing, (deep) neural network-based methods are proposed to learn

the sequential dynamics. For instance, Tang et al. [96] propose to apply the convolutional

neural network (CNN) on item embedding sequence, where the short-term contexts can be

captured by the convolutional operations. In [97–100], recurrent neural network (RNN),

especially gated recurrent unit (GRU), based methods are utilized to model the sequential

patterns for the session-based recommendation [97], where the hidden states of RNNs reflect

the summary of the (sub)sequence. On the other hand, self-attention [56] exhibits promising

performance in sequence learning and is utilized in the sequential recommendation. In [101],

Kang et al. propose to leverage the self-attention for the next item prediction, which allows

to capture long-term semantics, as well as makes the prediction according to a few items

by using the attention model. In [102,103], Chen et al. and Huang et al. propose to adopt

memory networks [67] to memorize the important items that will play a role in predicting

future user actions. And in [38], Ma et al. not only utilize the memory network to store

the long-term user interest but also capture the short-term interests of users by a graph
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neural network. In [104], Yu et al. propose to unify both individual- and union-level

item interaction into preference inference model from multiple views. With the help of the

attention mechanism, the model can obtain a unified embedding to keep the individual-

level interactions with a linear combination of mapped items’ features. In [105], Sun et

al. propose a sequential recommendation model that employs the deep bidirectional self-

attention to model user behavior sequences. This is achieved by predicting the random

masked items in the sequence by jointly conditioning on their left and right context.
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Chapter 4

Neural Networks for Point-of-Interest

Recommendation: Capturing

Complex User-Item Interactions

4.1 Introduction

The rapid growth of mobile devices and location-acquisition technologies enable the con-

venient access of people’s real-time location information. This advancement empowers the

coming of Location-based Social Networks (LBSNs), such as Yelp1 and Foursquare2. In

these LBSNs, users are allowed to communicate with each other, post physical positions,

and share experiences associated with a location—Point-of-Interest (POI). The large num-

ber of user-POI interactions facilitates a practical and promising service—personalized POI

recommendation. POI recommender systems satisfy a potentially massive need for services

and offer major advantages to at least two parties: (1) helping locals or travelers to discover

exciting unvisited places; (2) providing possibilities for attracting more visitors for POIs.

In the literature, effective personalized POI recommendation approaches have been

proposed. These methods focus largely on collaborative filtering (CF), which can be divided

into memory-based and model-based methods [106]. Memory-based methods gather a user’s

preference with respect to unvisited POIs according to the weighted average of ratings

or preferences from similar users or POIs. For example, by considering the similarities

1https://www.yelp.com/
2https://foursquare.com/

https://www.yelp.com/
https://foursquare.com/
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between a user and his/her friends, [74] and [107] apply friend-based CFs to predict the

user preference on unvisited POIs. On the other hand, model-based approaches make

use of the user-POI history to learn a model for the recommendation. Stimulated by the

Netflix Prize contest3, some of the most common realizations of model-based approaches are

based on matrix factorization (MF) [8]. The latent characteristics underlying relationships

between users and POIs are discovered by MF, which predicts the user preference by the

inner product of user and item latent factors. For example, a weighted regularized MF was

adopted by [108], [78], and [109] to infer the user preference for unvisited POIs.

However, in large-scale data, the aforementioned techniques may not fully leverage

the complex user-POI interactions. The aforementioned memory- and MF-based methods

model the user preference by the weighted average of ratings or the inner product of latent

factors, where the scoring functions are linear models. Furthermore, it has been shown in [9,

22] that how the inner product combines latent features linearly and limits the effectiveness

and expressiveness of MF methods.

Recently, autoencoders (AEs) have been a great success in the field of recommendation

research community because of the ability to represent non-linear and complex data, and

provide more opportunities to reshape the conventional recommendation architectures [35,

46, 87]. Motivated by this, to cope with the complex user-POI check-in data, we propose

an autoencoder-based model. The main reason why we adopt the stacked AE is that

the stacked AE can effectively capture the complex relationships between users and POIs

with the deep neural network structure and the non-linear activation functions. These allow

richer data representations in the latent space. Our early empirical experiments also justify

that equipping AE with the same weighted loss function can achieve better performance

than the weighted regularized MF [20]. Furthermore, AE has strong connections with

multiple MF methods [46]. As such, it is straightforward to utilize AE for modeling the

user feedback data.

Nevertheless, the application of AE in the POI recommendation is a non-trivial task and

several important factors should be taken into account. First, we argue that certain POIs

are more representative than others in the user check-in records to reflect the preferences of

users. Treating these representative POIs equally with other POIs can lead to an inaccurate

understanding of the preferences of users. Thus, distinguishing the user preference degrees

on checked-in POIs is important for better learning the user preference. Second, a unique

3https://www.netflixprize.com/

https://www.netflixprize.com/
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property in the check-in records is the spatial context of POIs, which is critical for grasping

the user mobility patterns and improving the performance of recommendations. Therefore,

how to incorporate geographical information into the neural network-based method is wor-

thy of exploration. Third, check-in data is a kind of implicit feedback, which suggests that

there are only positive samples in the data records [31]. Furthermore, users can only visit

a small number of candidates from millions of POIs, which makes the user-POI check-in

data extremely sparse. Thus, a challenge is how to capture the preference of users from

the sparse implicit feedback.

To resolve the aforementioned challenges, a novel autoencoder-based model is proposed,

namely SAE-NAD, with two proposed components: a self-attentive encoder (SAE) and a

neighbor-aware decoder (NAD). First, unlike existing approaches that do not thoroughly

investigate the implicitness of the user preference, we adopt the self-attention encoder to

adaptively quantify an importance vector for each POI in a user’s check-in records, which

reveals the user preference from multiple perspectives. As such, it is possible to further

distinguish users’ preferences on checked-in POIs. The POIs with higher importance values

can lead to more contribution for the hidden representation of the user, which will make the

hidden representation of the user more personalized. Second, the neighbor-aware decoder

is proposed to combine the geographical influence effect [74, 75], which is widespread in

the action of human mobility on LBSNs. In order to quantify the effect of checked-in

POIs applied to unvisited POIs, we leverage the inner product between the embedding of

checked-in and unvisited POIs, along with the radial basis function (RBF) kernel (based

on the pairwise distance of the corresponding POIs). By doing this, the user reachability

on the adjacent and similar neighbors of checked-in POIs will be higher than the distant

ones, since the user has a larger chance to visit these POIs. Third, we assign the same

small weights to all unvisited POIs to model the sparse implicit feedback and assign larger

weights to visited POIs according to each user’s visit frequency, which allows a difference

between unvisited POIs, less-visited POIs, and frequently-visited POIs. Compared with

several state-of-the-art approaches and measured with validation metrics on three real-world

datasets, our model is evaluated thoroughly. The experimental results demonstrate our

model’s advances over other state-of-the-art POI recommendation models. The highlights

of this chapter are summarized as follows:

• We propose a self-attention encoder to adaptively compute an important vector for each
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checked-in POI to differentiate the user preference for checked-in POIs, and to make the

POI contribute to the user hidden representation according to the values of significance.

• We propose a neighbor-aware decoder to integrate the geographical influence effect, which

adopts the inner product between the embedding of checked-in POIs and unvisited ones,

along with the POI-POI relationships determined by the RBF kernel, to model the

influence checked-in POIs exerted on unvisited ones.

• The proposed model achieves the best performance on three real-world datasets compar-

ing to the state-of-the-art methods, exhibiting the superiority of our model.

4.2 Preliminaries

In this section, we first introduce the definitions and notations. Then we review the basic

ideas of autoencoders.

4.2.1 Definition and Notation

For ease of illustration, we first summarize the definitions and notations in this chapter.

Definition 1. (POI) A POI is defined as a uniquely identified site (e.g., a restaurant or

a shopping mall) with two attributes: an identifier and geographical coordinates (latitude

and longitude).

Definition 2. (Check-in) A check-in is a record demonstrating a user has visited a POI

at a certain time. Hence a user’s check-in is represented by a 3-tuple: user ID, POI ID,

and the timestamp.

Definition 3. (POI Recommendation) Given users’ check-in records, the POI recom-

mendation aims at recommending a list of POIs for each user that the user is interested in

but never visited.

POI recommendation is commonly studied on a user-POI check-in matrix R ∈ RM×N ,

where there are M users and N locations, and each entry ru,i represents the frequency

user u checked-in location i. We denote the binary rating matrix as X ∈ RM×N , where

each entry xu,i ∈ {0, 1} indicates whether user u has visited location i. The terms POI

and location are used interchangeably in this chapter. Here, following common symbolic

notation, upper case bold letters denote matrices, lower case bold letters denote column
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Table 4.1 List of notations.
M , N the number of users and POIs

X, X̂ the input data and reconstructed data
R the check-in frequency matrix
C the confidence matrix
W∗, b∗ the weight matrix and bias vector
a∗ the activation function
H the dimension of the bottleneck layer
da the dimension of the importance vector
γ the parameter to control POI’s correlation level
α, ε the parameters of the weighting scheme
λ the regularization term

vectors without any specification, and non-bold letters represent scalars. The notations are

shown in Table 4.1.

4.2.2 Autoencoders

A single hidden-layer autoencoder (AE) is an unsupervised neural network, which is com-

posed of two parts, i.e., an encoder and a decoder. The encoder has one activation function

that maps the input data to the latent space. The decoder also has one activation function

mapping the representations from the latent space to the reconstruction space. Given the

input xi, a single hidden-layer autoencoder is shown as follows:

encoder : zi = a1(W(1)xi + b(1)) ,

decoder : x̂i = a2(W(2)zi + b(2)) ,
(4.1)

where W∗, b∗, and a∗ denote the weight matrices, bias vectors, and activation functions,

respectively. x̂i is the reconstructed version of xi. The output zi of the encoder is the

representation of xi in the latent space. The goal of the autoencoder is to minimize the

reconstruction error of the output and the input. The loss function is shown as follows:

LAE =
M∑
i=1

||xi − x̂i||22 . (4.2)

Relations to word2vec. word2vec [110] is an effective and scalable method to
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learn embedding representations by modeling words’ contextual correlations in sentences.

word2vec utilizes either of two architectures to produce distributed representations of words:

continuous bag-of-words (CBOW) or continuous skip-gram. Taking continuous skip-gram

for example, the input of this model is a one-hot vector to represent the current word, then

the model uses the current word to predict the surrounding window of context words. This

model is highly similar to AE when the input of AE is a one-hot vector. If the current

word is i and target word is j, we set the activation function to identity and bias to zero,

then the output of the decoder is:

x̂ij = W
(2)>
j,∗ ·W

(1)
∗,i , (4.3)

where W
(1)
∗,i and W

(2)
j,∗ are the i-th column and j-th row of W1 and W2, respectively. We

further apply softmax on the output of the decoder:

P (lj|li) =
exp(x̂ij)∑
k exp(x̂ik)

, (4.4)

where this probability shows how likely the word j will appear in the window of the current

word i. The combination of Eqs. 4.3 and 4.4 is similar to the Eq. 2 in [110]. In our POI

recommendation setting, this formula demonstrates if a user has checked-in location li, how

likely the user would check-in location lj. Therefore, the inner product of W
(1)
∗,i and W

(2)
j,∗

can be used for capturing the relation between li and lj in a single hidden-layer AE.

4.3 Methodologies

In this section, we introduce the proposed model for POI recommendation, which consists of

two components, i.e., a self-attentive encoder and a neighbor-aware decoder, demonstrating

in Figure 4.1. We first present the stacked autoencoder as our major building block. Then

we illustrate the self-attentive encoder to adaptively select representative POIs that can

reflect users’ preferences. Next, we demonstrate the neighbor-aware decoder to model the

geographical influence in POI recommendation, which is a phenomenon that users tend

to check-in those unvisited POIs that close to a POI they checked-in before. Lastly, we

present the loss function for implicit feedback and how to optimize the proposed model.
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Figure 4.1 The model architecture of SAE-NAD. The yellow part is the
self-attentive encoder, the green part is the neighbor-aware decoder, and the
gray part is the attention network. The bright yellow rectangle is the user
hidden representation. Specifically, Att Layer denotes the attention layer and
Agg Layer denotes the aggregation layer.

4.3.1 Model Basics

To learn the user hidden representation and reconstruct user preferences on unvisited POIs,

we propose to adopt a stacked autoencoder, where the deep network architecture and non-

linear activation functions may capture the complex user-POI interactions [9]. Formally,

the stacked autoencoder is shown as follows:

encoder :

z
(1)
u = a1(W(1)xu + b(1))

z
(2)
u = a2(W(2)z

(1)
u + b(2))

decoder :

z
(3)
u = a3(W(3)z

(2)
u + b(3))

x̂u = a4(W(4)z
(3)
u + b(4))

(4.5)

where W(1) ∈ RH1×N , W(2) ∈ RH×H1 , W(3) ∈ RH1×H , and W(4) ∈ RN×H1 are learnable

parameter matrices of the stacked AE. H1 is the dimension of the first hidden layer, and

H is the dimension of the bottleneck layer. z
(2)
u and x̂u are the hidden representation and

reconstructed ratings of user u, respectively.
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4.3.2 Self-Attentive Encoder

As presented in Section 4.3.1, we apply a stacked AE to learn users’ hidden representations.

In the proposed model, the input is a multi-hot user preference vector xu ∈ RN , where 1 in

the vector indicates the user has been to a certain POI. Based on the input, the encoder

of a vanilla stacked AE works as follows: (1) Given a user’s check-in set Lu = {l1, ..., ln},
where ln is the index of a POI, corresponding POI vectors (e.g., W

(1)
∗,ln) in W(1) are selected

and summed; (2) After having the summed vector, performing the activation function to

get the user hidden representation. Here, W(1) works like a POI embedding matrix, which

is similar to the word embedding matrix in the word2vec [110] model.

Since the model input is a multi-hot vector, it makes each embedding in W(1)[Lu]

equally contribute to the user hidden representation, and [·] is the slicing operation that

selects corresponding POI vectors to form an H1-by-n sub-matrix:

W(1)[Lu] = (W
(1)
∗,l1 ,W

(1)
∗,l2 , ...,W

(1)
∗,ln), (4.6)

where W
(1)
∗,ln is the ln-th column of W(1).

However, in the user check-in history, there are some POIs that would be more repre-

sentative than others that can directly reflect a user’s preferences. These representative

POIs should contribute more to the user hidden representation for expressing the user pref-

erence. This inspires us to apply a self-attentive mechanism, which learns a weighted sum

of embeddings in W(1)[Lu] to form the user’s hidden representation.

The goal of the self-attentive encoder is to adaptively assign different importances on

checked-in POIs for expressing various preference levels of users. Then the embeddings

of checked-in POIs are aggregated in a weighted manner to characterize users. Given

checked-in POI embeddings W(1)[Lu] of user u, we use a single-layer network without bias

to compute the importance score (attention score):

au = softmax
(
tanh(w>a W(1)[Lu])

)
, (4.7)

where wa ∈ RH1 is the parameter in the attention layer, the softmax ensures all the

computed weights sum up to 1. Then we sum up the embeddings in W(1)[Lu] according to
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the importance score provided by au to get a vector representation of the user:

z(1)
u =

∑
lj∈Lu

au,jW
(1)
∗,lj . (4.8)

However, the standard attention mechanism that assigning a single importance value to

a POI makes the model only focus on one specific aspect of POIs [111], which is not sufficient

to reflect the sophisticated human sentiment on POIs. Taking a restaurant for example.

From the perspective of food flavor, a user likes this restaurant; from the perspective of

the eating environment, the user may think the restaurant is not good enough. Thus, to

capture the user preference from different aspects, we may need to perform multiple times

of Eq. 4.7 with different sets of parameters.

Therefore, we adopt an importance score matrix to capture the effects of multiple-

dimensional attention [56] on POIs. Each dimension of the importance scores represents

the importance levels of checked-in POIs in a certain aspect. Suppose we want da aspects

of attention to be extracted from the embeddings, then we can extend wa to Wa ∈ Rda×H1 :

Au = softmax
(
tanh

(
WaW

(1)[Lu])
)
, (4.9)

where Au ∈ Rda×n is the importance score matrix, each column of Au is an importance

vector of a specific POI, and each row of Au depicts the importance levels of n checked-in

POIs in a certain aspect. The softmax is performed along the second dimension of its

input. By multiplying the importance score matrix with the POI embeddings, we have:

Z(1)
u = Au · (W(1)[Lu])

> , (4.10)

where Z
(1)
u ∈ Rda×H1 is the matrix representation of user u, which depicts the user from da

aspects. To make the matrix representations of users fit our encoder, we have one more

neural layer to aggregate users’ representations from different aspects into one aspect. Then

the vector representation of user u is shown:

z(1)
u = at(Z

(1)>
u wt + bt) , (4.11)

where wt ∈ Rda is the parameter in the aggregation layer, at is the activation function.
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4.3.3 Neighbor-Aware Decoder

In LBSNs, there is the physical distance between users and POIs, which makes the POI

recommendation distinct from other recommendation tasks. In a user’s check-in history,

the user’s occurrences are typically constrained in several certain areas. This is the well-

known geographical clustering phenomenon (a.k.a geographical influence) in users’ check-in

activities, which has been exploited to largely improve the POI recommendation perfor-

mance [74, 75, 78, 79, 108, 109]. Most of the previous studies mainly exploit geographical

influence from a user’s perspective: learning the geographical distribution of each user’s

check-ins [74, 75, 109] or by the inner product between the user latent factors and the la-

tent factors of a certain POI’s neighbors [79, 108]. Whereas the proposed neighbor-aware

influence model captures the geographical influence solely from the perspective of POIs.

According to the aforementioned geographical influence, one intuition contributes to this

phenomenon: users have a higher chance to check-in POIs surrounded by a POI that they

visited before. From this intuition, a checked-in POI may have impacts on other unvisited

POIs, and the impact level is determined by the properties and distance between the POI

pairs. Inspired by the skip-gram model of word2vec, which applies the inner product to

predict the context words given an input word, we also leverage similar techniques to

model the influence a checked-in POI exerted on unvisited POIs (Section 4.2.2, relations

to word2vec). The proposed technique can discover unvisited POIs that may be similar to

the visited ones. Similarly, we treat W(1) as the POI embedding matrix (the first weight

matrix in word2vec) and W(4) as the context POI embedding matrix (the second weight

matrix in word2vec). It is also important to note that the proposed method is also similar

to FISM [41], where FISM adopts two matrices of item latent factors to model the similarity

between items.

Formally, given a user’s check-in set Lu = {l1, ..., ln}, the influence checked-in POIs

exerted on unvisited POIs is shown:

Pu = W(4) ·W(1)[Lu] , (4.12)

where Pu ∈ RN×n. Each column of Pu is the influence a certain checked-in POI applied on

all other POIs (the influence on itself is set to 0).

The above inner product gives a basic indication about how related two POIs are,

however, it does not explicitly take the distance between two POIs into account. According
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to Tobler’s First Law of Geography, everything is related to everything else, but near things

are more related than distant things. To incorporate the geographical distance property, we

adopt the Gaussian radial basis function kernel (RBF kernel) to further make checked-in

POIs exert more influence on nearby unvisited POIs. The RBF kernel is shown as follows:

K(li, lj) = exp(−γ||li − lj||2) , (4.13)

where li and lj are the geographical coordinates of two POIs li and lj. γ > 0 is a hyper-

parameter to control the geographical correlation level of two given POIs, a larger value

of γ will lead to a larger K(li, lj). The value range of RBF kernel is K(li, lj) ∈ [0, 1]. For

computation simplicity, if the value of K(li, lj) is less than 0.1, we set it to 0. We can pre-

compute the pairwise RBF value of each POI pair to get a RBF value matrix K ∈ RN×N ,

where the diagonal is set to 0.

By incorporating the RBF kernel effect, our neighbor-aware influence model is shown:

Pu = (W(4) ·W(1)[Lu])�K[Lu] , (4.14)

where K[Lu] ∈ RN×n is the RBF kernel value from Eq. 4.13, � is the element-wise multi-

plication.

To obtain the accumulated influence from all checked-in POIs, we sum along the row

of Pu ∈ RN×n to get pu ∈ RN :

pu =
n∑
j=1

P(i,j)
u , i = 1, 2, ..., N, (4.15)

where i and j are the row and column index, respectively.

To incorporate the neighbor-aware influence, the decoder of the proposed model can be

rewritten as:

x̂u = a4(W(4)z(3)
u + pu + b(4)), (4.16)

where W(4)z
(3)
u captures the user preference, pu models the neighbor-aware geographical

influence.

Discussion. As we mentioned before, the way we adopt the inner product to capture

the relations between POIs is similar to FISM [41], if we treat W(1) as P and W(4) as

Q in FISM. In FISM, the predicted rating of user u on item i is mainly estimated by
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j∈R+

u
pjq

>
i , where R+

u is the set of items rated by user u, pj and qi are learned item

latent factors from P and Q, respectively.

4.3.4 Weighted Loss for Implicit Feedback

In the POI recommendation, check-in data is treated as implicit feedback. Since a user’s

check-in records only include the locations she visited, and the visit frequency may indicate

the confidence level of her preference. Therefore, there are only positive examples observed

in the check-in records, which makes POI recommendation a One-Class Collaborative Fil-

tering (OCCF) problem [20,31].

To tackle the OCCF problem and capture user preferences from check-in data, we adopt

a general weighting scheme [20] to distinguish visited and unvisited POIs. Specifically, we

consider all unvisited locations as negative examples and assign the weights of all negative

examples to the same value, e.g., 1. As for visited locations, the weights are increased

monotonically with users’ check-in frequencies. With such a weighting scheme, our model

not only distinguishes visited and unvisited POIs, but also discriminates the confidence

levels of all visited POIs. The objective function for implicit feedback is presented as

follows:

LWAE =
M∑
u=1

N∑
i=1

||cu,i (xu,i − x̂u,i)||22 = ||C� (X− X̂)||2F , (4.17)

where � is the element-wise multiplication of matrices. || · ||F is the Frobenius norm of

matrices. In particular, we set the confidence matrix C ∈ RM×N as follows:

cu,i =

1 + α log(1 + ru,i/ε) if ru,i > 0

1 otherwise
(4.18)

where α and ε are hyper-parameters. This setting exactly encodes the observation that the

frequency is a confidence of user preferences. This weighted loss with a vanilla autoencoder

can be used in other recommendation tasks that take implicit feedback as input.
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4.3.5 Network Training

By combining regularization terms, the objective function of the proposed model is shown

as follows:

L = ||C� (X− X̂)||2F + λ(||W∗||2F + ||Wa||2F + ||wt||22), (4.19)

where λ is the regularization parameter, W∗ includes W(1), W(2), W(3), and W(4). Wa and

wt are the learned parameters in the attention layer and aggregation layer, respectively. By

minimizing the objective function, the partial derivatives with respect to all the parameters

can be computed by gradient descent with back-propagation. And we apply Adam [112]

to automatically adapt the learning rate during the learning procedure. The mini-batch

training algorithm is shown in Algorithm 1.

Algorithm 1: Training Algorithm

1 Input: X, C ;
2 Initialize parameters W∗, Wa, wt, b∗, bt ;
3 numBatches = M / batchSize ;
4 while iter < numIterations do
5 Shuffle(X,C) ;
6 for batchID = 0; batchID < numBatches; batchID++ do
7 Xbatch,Cbatch = ExtractBatchData(batchID, X,C) ;

8 Apply Eq. 4.6 to get W(1)[Lu] for each user u in Xbatch ;

9 Apply Eq. 4.9, Eq. 4.10, and Eq. 4.11 to get z
(1)
u ;

10 Apply Eq. 4.14 and Eq. 4.15 to get pu ;

11 Apply Eq. 4.5 and Eq. 4.16 to get X̂batch ;
12 Apply Eq. 4.19 to obtain Lbatch and back-propagate the error through the

entire network ;

13 end

14 end

Recommendation. At the prediction phase, the proposed model takes each user’s

binary rating vector xu as input and obtains the reconstructed rating vector x̂u as output.

Then the POIs that are not in the training set and have the largest prediction scores in x̂u

are recommended to the user.
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4.4 Experiments

In this section, we evaluate the proposed model with state-of-the-art methods on three

real-world datasets.

4.4.1 Datasets

We evaluate the proposed model on three real-world datasets: Gowalla [73], Foursquare

[113], and Yelp [113]. The Gowalla dataset was generated worldwide from February 2009 to

October 2010. The Foursquare dataset comprised check-ins from April 2012 to September

2013 within the United States (except Alaska and Hawaii). The Yelp dataset was obtained

from the Yelp dataset challenge round 7. Each check-in record in the above datasets

includes a timestamp, a user ID, a POI ID, and the latitude and longitude of this POI.

To filter noisy data, for the Gowalla dataset, we remove users whose total check-ins are

less than 20 and POIs visited less than 20 times; for the Foursquare and Yelp datasets,

we eliminate those users with fewer than 10 check-in POIs, as well as those POIs with

fewer than 10 visitors. The data statistics after preprocessing are shown in Table 4.2. For

each user, we randomly select 20% of her visiting locations as ground truth for testing and

10% of which as the validation set. The remaining constitutes the training set. Similar

data partition methods have been widely used in previous works [74, 108, 114] to validate

the performance of POI recommendation. The random selection is carried out six times

independently, we tune the model on one partition and report the average results on the

rest five partitions.

Table 4.2 The statistics of datasets.
Dataset #Users #POIs #Check-ins Density
Gowalla 43,074 46,234 1,720,082 0.0500%

Foursquare 24,941 28,593 1,196,248 0.1006%
Yelp 30,887 18,995 860,888 0.1399%

4.4.2 Evaluation Metrics

We evaluate our model versus other models in terms of Precision@k (P@k), Recall@k

(R@k), and MAP@k. For each user, Precision@k indicates what percentage of locations

among the top k recommended POIs has been visited by her, while Recall@k indicates what
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percentage of her visiting locations can emerge in the top k recommended POIs. MAP@k

is the mean average precision at k. Average precision is the average of precision values at

all ranks where relevant POIs are found.

4.4.3 Methods Studied

To demonstrate the effectiveness of our model, we compare to the following POI recom-

mendation methods.

Traditional MF methods for implicit feedback 4:

• WRMF, weighted regularized matrix factorization [20], which minimizes the square

error loss by assigning both observed and unobserved check-ins with different confi-

dential values based on matrix factorization.

• BPRMF, Bayesian personalized ranking [37], which optimizes the ordering of the

preferences for the observed and unobserved locations.

Classical POI recommendation methods5:

• MGMMF, a multi-center Gaussian model fused with matrix factorization [75], which

learns regions of activities for each user using multiple Gaussian distributions.

• IRENMF, instance-region neighborhood matrix factorization [78], which incorpo-

rates instance-level and region-level geographical influence into weighted matrix fac-

torization.

• RankGeoFM, ranking-based geographical factorization [79], which is a ranking-

based matrix factorization model that learns users’ preference rankings for POIs and

includes the geographical influence of neighboring POIs.

Deep learning-based methods :

• PACE, preference and context embedding [115], a deep neural architecture that

jointly learns the embeddings of users and POIs to predict both user preferences on

POIs and various contexts associated with users and POIs.

4The implementations are from LibRec: https://www.librec.net/
5In a recent study [113] that evaluated a number of POI recommendation methods, RankGeoFM and

IRENMF achieve the best results on three datasets.
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• DeepAE, a three-hidden-layer autoencoder with a weighted loss function (Section

4.3.4).

The proposed method :

• SAE-NAD, the proposed model with the self-attentive encoder (Section 4.3.2) and

the neighbor-aware decoder (Section 4.3.3) for implicit feedback (Section 4.3.4).

4.4.4 Parameter Settings

In the experiments, the latent dimension of all the models is set to 50. The dimension of the

importance vector da and the geographical correlation level γ are selected by grid search,

which are set to 20 and 60, respectively. The parameters α and ε of the weighting scheme

are set to 2.0 and 1e-5, respectively. The gradient descent hyper-parameters—learning rate

and regularization λ are set to 0.001 and 0.001, respectively. a1-a3 are set as the tanh

function, a4 is set to the sigmoid function. The batch size is set to 256. On the Gowalla

dataset, we set the network architecture as [N, 500, 50, 500, N ]; otherwise, the network

architecture is set as [N, 200, 50, 200, N ]. In addition, Dropout is used except for the first

and last layer, where the Dropout probability is set to 0.5. Our model is implemented with

PyTorch6 running on GPU machines of Nvidia GeForce GTX 1080 Ti7.

For other baseline methods, following parameter settings achieve relatively good per-

formance. DeepAE adopts the same network architecture and weighted loss function with

the proposed model. PACE uses the same network architecture (except for the hidden

dimension) and hyper-parameters in the original paper. For RankGeoFM, the number of

the nearest neighbors is set to 300, the regularization radius C is set to 1.0, the regulariza-

tion balance α is set to 0.2, and the ranking margin ε is set to 0.3 on all datasets. As for

IRENMF, λ1, λ2, and λ3 are set to 0.015, 0.015, and 1, respectively; the instance weighting

parameter α is set to 0.6; as a preprocessing step, the model uses the k-means algorithm to

cluster locations into 100 groups and the number of the nearest neighbors for each location

is set to 10. For MGMMF, the α and β of the Poisson Factor Model are set to 20 and

0.2, respectively; α, θ, and the distance threshold d of the Multi-center Gaussian Model

are set to 0.2, 0.02, and 15, respectively. WRMF adopts the same weighting scheme as the

proposed model.

6https://pytorch.org/
7Code is available at https://github.com/allenjack/SAE-NAD

 https://github.com/allenjack/SAE-NAD
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Figure 4.2 The comparison of performance on Gowalla.
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Figure 4.3 The comparison of performance on Foursquare.
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Figure 4.4 The comparison of performance on Yelp.

4.4.5 Performance Comparison

The performance comparison of our model with other state-of-the-art methods are shown

in Figures 4.2, 4.3, and 4.4.

Observations about our model:
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First, our proposed model–SAE-NAD achieves the best performance on three datasets

with all evaluation metrics, which illustrates the superiority of our model.

Second, SAE-NAD outperforms PACE, one possible reason is that PACE models the

important geographical influence by a context graph, which does not explicitly model the

user reachability to unvisited POIs. Instead, SAE-NAD directly captures the geographical

influence between checked-in POIs and unvisited POIs through the neighbor-aware decoder.

Third, SAE-NAD achieves better results than DeepAE, the major reason is that DeepAE

only applies a multi-layer perceptron to model the check-in data without considering other

context information in the check-in records.

Fourth, SAE-NAD outperforms RankGeoFM and IRENMF. Although these two meth-

ods effectively incorporate geographical influence into a ranking model and an MF model,

respectively, they still apply the inner product to predict users’ preferences on POIs, which

may not sufficiently capture the complex interactions between users and POIs. On the

other hand, SAE-NAD adopts a deep neural structure with non-linear activation functions

to model the non-trivial interactions in the user check-in data.

Fifth, although MGMMF models the geographical influence effectively, it is not good

at capturing user preferences from implicit feedback. Nevertheless, SAE-NAD encodes the

user’s check-in frequencies into the weighting scheme, which indicates the confidence of

users’ preferences.

Sixth, SAE-NAD outperforms BPRMF, because BPRMF only learns the pairwise rank-

ing of locations based on user preferences, it does not incorporate the context information

such as spatial information of POIs. Besides, unlike existing methods that do not deeply

explore the implicitness of users’ preferences on checked-in POIs, SAE-NAD assigns an

importance vector to each checked-in POI to characterize the user preference in multiple

aspects.

Other observations:

First, PACE outperforms most of the baseline methods because its neural embedding

part models the user-POI interactions through the implicit feedback data. In the mean-

while, the context graph incorporates the context knowledge from the unlabeled data.

Second, RankGeoFM and IRENMF both perform relatively well, which confirms the

results reported in [113].

Third, although DeepAE applies a deep neural structure with the weighted loss for

implicit feedback, it still does not achieve better results than RankGeoFM and IRENMF.
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The reason is that DeepAE does not adopt the geographical information which is distinct

for POI recommendation. But DeepAE performs better than WRMF and BPR, which may

confirm that a deep network structure with non-linear activation functions can capture more

sophisticated user-POI relations.

Fourth, both WRMF and BPRMF are superior to MGMMF, one possible reason is that

MGMMF is based on the probabilistic factor model, which models user check-in frequencies

directly, instead of modeling user preferences on POIs. On the other hand, WRMF and

BPRMF are designed for implicit feedback. WRMF not only considers the observed check-

ins but also gives small confidence to all unvisited locations. BPRMF leverages location

pairs as training data to learn the correct ranking of location pairs.

Table 4.3 The performance of the self-attentive encoder and neighbor-aware
decoder on Gowalla, Foursquare, and Yelp. P@10 denotes Precision@10 and
R@10 denotes Recall@10.

Gowalla P@10 R@10 MAP@10
WAE 0.05599 0.13819 0.06728

SAE-WAE 0.06039 0.14808 0.07257
NAD-WAE 0.07029 0.17915 0.08699

Foursquare P@10 R@10 MAP@10
WAE 0.05961 0.11134 0.05632

SAE-WAE 0.06346 0.11813 0.06054
NAD-WAE 0.06598 0.12546 0.06333

Yelp P@10 R@10 MAP@10
WAE 0.03764 0.07386 0.03198

SAE-WAE 0.03951 0.07586 0.03307
NAD-WAE 0.04115 0.08016 0.03402

4.4.6 Impacts of Self-Attentive Encoder and Neighbor-Aware Decoder

The self-attentive encoder and neighbor-aware decoder are two important components of

the proposed model. To verify the performance of each component, we solely evaluate

each component along with the weighted stacked autoencoder (Section 4.3.4). Here, we

denote the stacked autoencoder with the weighted loss as WAE (equals to DeepAE), the

self-attentive encoder (SAE) with WAE as SAE-WAE, and the neighbor-aware decoder

(NAD) with WAE as NAD-WAE. The performance is shown in Table 4.3.
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Figure 4.5 The effect of da.

The results in Table 4.3 exhibit the effectiveness of the individual component of the

proposed model. There are several observations: (1) The autoencoder with the weighted

loss (WAE) achieves a reasonably good result, which even better than some baseline meth-

ods that incorporating the geographical influence. This illustrates that the frequency of

the implicit feedback is a significant factor to reveal user preferences. (2) By adopting

the self-attention mechanism, SAE-WAE outperforms WAE on three datasets. The reason

is that the self-attentive encoder attends the POIs that are more representative to reflect

user preferences, leading to more personalized and effective user hidden representations.

(3) NAD-WAE achieves better performance than SAE-WAE and WAE on three datasets.

The reason why NAD-WAE performs better is that NAD-WAE captures the correlations

between checked-in POIs and unvisited POIs, and applies these effects to the last layer of

the decoder which directly determines the model output. The results further confirm that

modeling geographical influence is essential for POI recommendation.

4.4.7 Sensitivity of Hyper-Parameters

In the proposed model, two hyper-parameters are critical for performance improvements:

the number of attention aspects da in the self-attentive encoder (Section 4.3.2) and the

geographical correlation level γ in the neighbor-aware decoder (Section 4.3.3). The effects

of these two parameters are shown in Figures 4.5 and 4.6. Due to the space limit, we
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(b) γ on Foursquare.

Figure 4.6 The effect of γ.

only present the effects on Gowalla and Foursquare datasets, the parameter effects on Yelp

dataset have similar trends.

The variation of da is shown in Figure 4.5. We can observe that a single importance

value from the attention layer is not sufficient to express the complex human sentiment

on checked-in POIs. By assigning an importance vector to each checked-in POI, the user

preference on those visited POIs can be captured from different aspects. With the increase

of da, the model performance largely improves and becomes steady.

The variation of γ is shown in Figure 4.6. From the figure, we can observe that when

γ = 0 the model does not consider the distance between POIs, leading to unsatisfactory

results. This also verifies the significance of geographical influence in POI recommendation.

The larger value of γ strengthens the correlated level between two certain POIs, which

makes geographical neighbors of checked-in POIs play a significant role in inferring users’

preferences.

4.5 Summary

In this chapter, we propose an autoencoder-based model for POI recommendation, which

consists of a self-attentive encoder and a neighbor-aware decoder. In particular, the self-

attentive encoder is used to adaptively discriminate the degree of user preference on each

checked-in POI, by assigning an importance score vector. The neighbor-aware decoder is
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adopted to model the geographical influence checked-in POIs exerted on unvisited POIs,

which differentiates the user reachability on unvisited POIs. Experimental results on three

real-world datasets clearly validate the improvements of our model over many state-of-the-

art baseline methods.
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Chapter 5

Neural Networks for Content-aware

Recommendation: Incorporating

Content Information

5.1 Introduction

To construct personalized recommender systems, two sorts of information are for the most

part accessible and utilized: user feedback and item descriptions, e.g., users’ clicking his-

tories on movies and movies’ plots. Approaches based on item text modeling such as

latent dirichlet allocation (LDA) [116], stacked denoising autoencoder (SDAE) [117], and

variational autoencoder (VAE) [118] have been proposed to additionally utilize items’ de-

scriptions [35,43,84], e.g., reviews, abstracts, or synopses, to enhance the top-K recommen-

dation performance. Collaborative deep learning (CDL) [35] and collaborative variational

autoencoder (CVAE) [43] are two representative methods, which explicitly connect the rec-

ommendation task with the learning of item content. In particular, CVAE and CDL apply a

VAE and an SDAE, respectively, to learn hidden representations from items’ bag-of-words,

which are integrated with the probabilistic matrix factorization (PMF) [44]. Then learned

item hidden representations are regularized with PMF’s item latent factors.

Although current approaches have proposed successful models and obtained satisfactory

outcomes, there are still many considerations that need to be considered in order to improve

the performance. First, previous studies [35, 43] learn the hidden representations of item
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content from items’ (normalized) bag-of-words vectors, which does not take into account

the importance of different words when describing a certain item. Equally treating the

informative words along with other words may lead to an incomplete understanding of the

item content. Second, previous works [43,90] apply a weighted regularization term to fuse

the hidden representations from heterogeneous information sources, such as items’ ratings

and descriptions. This may not fully exploit the data from heterogeneous sources and

cause cumbersome hyper-parameter tuning, as various data sources are characterized by

distinct statistical properties and different orders of magnitude, which is usually the case

for heterogeneous data. Third, it is also important to note that the relationship between

items, e.g. movies of the same director and citations between research articles, has been

ignored in previous works. It is highly possible that closely related items can share the

same themes or have similar attributes. As such, discovering the preferences of users on

neighbors of an item often gains extra benefits from inferring the preferences of users for

this item.

To address the problems mentioned above, we propose a novel recommendation model,

gated attentive-autoencoder (GATE), for the content-aware recommendation. GATE is

developed on a stacked autoencoder (AE) model with several effective modules: a word-

attention module, a neighbor-attention module, and a neural gating structure. The encoder

of the stacked AE encodes the user’s implicit feedback on a certain item into the item’s hid-

den representation. Then, from the item’s sequence of words, the word-attention module

learns the item embedding, where the informative words can be adaptively chosen without

using complex recurrent or convolutional neural networks. To smoothly fuse the represen-

tations of items’ ratings and descriptions, we propose a neural gating layer to extract and

combine the salient parts of these two hidden representations, which is motivated by the

long short-term memory (LSTM) [119]. Moreover, item-item relationships provide valuable

auxiliary knowledge to forecast the user preference, since closely related items can have the

same themes or characteristics. As a result, we apply a neighbor-attention module to learn

the hidden representation of an item’s neighborhood. By modeling users’ preferences on

the item’s neighborhood, the users’ preferences on this item can be indirectly reflected. On

four real-world datasets, we evaluate our model extensively with several state-of-the-art ap-

proaches and multiple validation metrics. The experimental results not only demonstrate

the improvements of our model over other baselines but also show the effectiveness of the

gating layer and attention modules.
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To summarize, the major contributions of this chapter are listed as follows:

• To learn the hidden representations from items’ content information, we apply a word-

attention module to adaptively distinguish informative words. As such, the item con-

tent can be better comprehended. Our word-attention module can achieve the same

performance with complex recurrent or convolutional neural networks yet with fewer

parameters.

• To effectively fuse the hidden representations from items’ contents and ratings, we pro-

pose a neural gating layer to extract and combine the salient parts of them.

• On the basis of item-item relations, a neighbor-attention module is utilized to learn

the hidden representation of an item’s neighborhood. By modeling user preferences

on the neighborhood of an item, it provides a significant supplement for inferring user

preferences on this item.

• The two proposed attention modules are capable of interpreting and visualizing the

important words and neighbors of items, respectively. Experiments on four real-world

datasets indicate that the proposed GATE model substantially outperforms the state-of-

the-art content-aware recommendation approaches.

5.2 Problem Formulation

The recommendation task considered in this paper takes implicit feedback [20] as the

training and test data. The user preferences are presented by an m-by-n binary matrix

R. The entire collection of n items is represented by a list of documents D, where each

document in D is represented by a sequence of words. The item relations are presented by

a binary adjacent matrix N ∈ Rn×n, where Nij = 1 if item i and j are related or connected.

Given the item descriptions D, the item relations N, and part of the observed preference

in R, the problem is to predict the rest of preference scores in R.

Here, following common symbolic notation, upper case bold letters denote matrices,

lower case bold letters denote column vectors without any specification, and non-bold

letters represent scalars.
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Figure 5.1 The architecture of GATE. The yellow part is the stacked AE
for binary rating prediction, and the green part is the word-attention module
for item content. The blue rectangle is the gating layer to fuse the hidden rep-
resentations. The middle pink part is the neighbor-attention module to obtain
the hidden representation of an item’s neighborhood. Specifically, Word Att
denotes the word-attention layer, Neighbor Att denotes the neighbor-attention
layer, and Agg Layer denotes the aggregation layer. � is the element-wise
multiplication and ⊕ is the element-wise addition.

5.3 Methodologies

In this section, we introduce the proposed model, which is shown in Figure 5.1. We first

illustrate the basic model to learn item representations from users’ binary ratings. We

then introduce the multi-dimensional attention for learning item representations from word

sequences. Next, we present the neural gating layer to combine the item representations

from ratings and contents. We then demonstrate how to learn the hidden representation

of an item’s neighborhood and utilize it to assist in inferring user preferences. Lastly, we

go through the loss function and training process of the proposed model.

5.3.1 Model Basics

The substantial increase of users and items makes the user-item interactions more complex

and hard to model. Classical matrix factorization (MF) methods apply the inner product to
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predict user preferences on items, which linearly combines users’ and items’ latent factors.

However, it has been shown in [9,22] how the linear combination of the inner product can

limit the expressiveness of MF. Inspired by the recent works using autoencoders (AEs) to

model explicit feedback [120] and implicit feedback [46], we also adopt AE as our base

building block due to its ability to learn richer representations and the close relationship

to MF [46].

To capture users’ preferences on an item, we apply a stacked AE to encode users’ binary

ratings ri ∈ Rm on a certain item i into the item’s rating hidden representation zri (the

superscript r indicates the hidden representation is learned from items’ binary ratings):

encoder :

z
(1)
i = a1(W1ri + b1)

zri = a2(W2z
(1)
i + b2)

decoder :

z
(3)
i = a3(W3z

r
i + b3)

r̂i = a4(W4z
(3)
i + b4)

(5.1)

where W1 ∈ Rh1×m, W2 ∈ Rh×h1 , W3 ∈ Rh1×h, and W4 ∈ Rm×h1 are the weight matrices.

m is the number of users, h1 is the dimension of the first hidden layer, and h is the dimension

of the bottleneck layer. ri is a multi-hot vector, where ru,i = 1 indicates that the user u

prefers the item i.

5.3.2 Word-Attention Module

Unlike previous works [22,35,43] learning item embeddings from bag-of-words and neglect-

ing the importances of different words, we propose a word-attention module based on items’

word sequences. Compared to learning from items’ bag-of-words, the attention weights

learned by our module adaptively select the informative words with different importances,

and make the informative words contribute more to depict items.

Embedding Layer. In the proposed module, the input of item i is a sequence of li

words from its text description, where each word is represented as a one-hot vector. At

the embedding layer, the one-hot encoded vector is converted into a low-dimensional real-

valued dense vector representation by a word embedding matrix E ∈ Rh×v, where h is the

dimension of the word embedding and v is the size of the vocabulary. After converted by
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the embedding layer, the item text is represented as:

Di =

 | | |
... ej−1 ej ej+1 ...

| | |

 ,
where Di ∈ Rh×li and ej ∈ Rh.

Multi-dimensional Attention. Inspired by the Transformer [56] solely relying on at-

tention mechanisms for machine translation, we apply a multi-dimensional attention mech-

anism on word sequences to learn items’ hidden representations without using complex

recurrent or convolutional neural networks. The reason is that, in the real-world scenario,

users may care more about the topics or motifs of items that can be illustrated in a few

words, rather than the word-word relations in the sequence.

The goal of the word-attention is to assign different importances on words, then ag-

gregate word embeddings in a weighted manner to characterize the item. Given word

embeddings of an item Di, a vanilla attention mechanism to compute the attention weights

is represented by a two-layer neural network:

ai = softmax(w>a1tanh(Wa2Di + ba2 ⊗outer 1|li|)) , (5.2)

where wa1 ∈ Rh, Wa2 ∈ Rh×h, and ba2 ∈ Rh are the parameters to be learned, the

softmax(·) ensures all the computed weights sum up to 1. Then we sum up the embeddings

in Di according to the weights provided by ai to get the vector representation of the item

(the superscript c indicates the hidden representation is learned from items’ contents):

zci =
∑

ej∈Di

ai,jej . (5.3)

However, assigning a single importance value to a word embedding usually makes the

model focus on a specific aspect of an item content [111]. It can be multiple aspects in the

item content that together characterize this item, especially when the number of words is

large.

Thus, we need multiple ai to focus on different parts of the item content. Based on this

inspiration, we adopt a matrix instead of ai to capture the multi-dimensional attention and
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assign an attention weight vector to each word embedding. Each dimension of the attention

weight vector represents an aspect of relations among all embeddings in Di. Suppose we

want da aspects of attention to be extracted from the embeddings, then we extend wa to

Wa1 ∈ Rda×h, which behaves like a high level representation of a fixed query ”what are the

informative words” over other words in the text:

Ai = softmax
(
Wa1tanh(Wa2Di + ba2 ⊗outer 1|li|) + ba1 ⊗outer 1|da|

)
, (5.4)

where Ai ∈ Rda×li is the attention weight matrix, ba1 ∈ Rda is the bias term, and the

softmax is performed along the second dimension of its input. By multiplying the attention

weight matrix with word embeddings, we have the matrix representation of an item:

Zc
i = AiD

>
i , (5.5)

where Zc
i ∈ Rda×h is the matrix representation of the item. Then we have another neural

layer to aggregate the item matrix representation into a vector representation. The hidden

representation of the item is revised as:

zci = at(Z
c>
i wt) , (5.6)

where wt ∈ Rda is the parameter in the aggregation layer, at(·) is the activation function.

5.3.3 Neural Gating Layer

We have obtained the item hidden representations from two heterogeneous data sources,

i.e., the binary ratings and the content descriptions of items. The next aim is to combine

these two kinds of hidden representations to facilitate the user preference prediction on

unrated items. Unlike previous works [35, 43] regularizing these two kinds of hidden rep-

resentations, we propose a neural gating layer to adaptively merge them. This is inspired

by the gates in long short-term memory (LSTM) [119]. The gate G and the fused item

hidden representation zgi are computed by:

G = σ(Wg1z
r
i + Wg2z

c
i + bg) ,

zgi = G� zri + (1−G)� zci ,
(5.7)
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where Wg1 ∈ Rh×h, Wg2 ∈ Rh×h, and bg ∈ Rh are the parameters in the gating layer, σ(·)
is the sigmoid function. By using a gating layer, the salient parts from these two hidden

representations can be extracted and smoothly combined.

5.3.4 Neighbor-Attention Module

Some items have an inherent relationship between each other, e.g., paper citations. Those

closely related items may form a local neighborhood that shares the same topic or has the

same attributes. Therefore, for a certain item, if a user is interested in its neighborhood, the

user may also be interested in this item. For example, if a user likes superhero movies, she

would also be willing to watch the movie produced by Marvel. Besides, in an item’s local

neighborhood, some items may be more representative, which should play an important role

in describing the neighborhood. Inspired by this intuition, we propose a neighbor-attention

module to learn the neighborhood hidden representation of a certain item. This attention

mechanism is similar to which in the machine translation [55].

Formally, we define the neighbor set of item i asNi, which can be obtained from the item

adjacency matrix1 N. The neighborhood hidden representation zni of item i is computed

by:

si,j = tanh(zg>i Wnz
g
j ),∀j ∈ Ni ,

ai = softmax(si) ,

zni =
∑
j∈Ni

ai,jz
g
j ,

(5.8)

where Wn ∈ Rh×h is the parameters to be learned in the neighbor-attention layer.

To simultaneously capture users’ preferences on a certain item and its neighborhood,

the decoder in Eq. 5.1 is rewritten as:

z
(3,g)
i = a3(W3z

g
i + b3) ,

z
(3,n)
i = a3(W3z

n
i + b3) ,

r̂i = a4(W4z
(3,g)
i + W4z

(3,n)
i + b4) .

(5.9)

1For items that do not inherently have item-item relations, we can compute the item-item similarity
from the binary rating matrix R and set a threshold to select neighbors.
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5.3.5 Weighted Loss

To model the user preference from implicit feedback, we follow a similar manner in [20] to

plug in a confidence matrix in the square loss function:

LAE =
n∑
i=1

m∑
u=1

||Cu,i(Ru,i − R̂u,i)||22 = ||C> � (R> − R̂>)||2F , (5.10)

where � is the element-wise multiplication of matrices. || · ||F is the Frobenius norm of

matrices. In particular, we set the confidence matrix C ∈ Rm×n as follows,

Cu,i =

ρ if Ru,i = 1

1 otherwise
(5.11)

where the hyper-parameter ρ > 1 is a constant.

5.3.6 Network Training

By combining with regularization terms, the objective function of the proposed model is

shown as follows:

L = LAE + λ(||W∗||2F + ||wt||22) , (5.12)

where λ is the regularization parameter. By minimizing the objective function, the partial

derivatives with respect to all the parameters can be computed by gradient descent with

back-propagation. We apply Adam [112] to automatically adapt the learning rate during

the learning procedure.

5.4 Experiments

In this section, we evaluate the proposed model with state-of-the-art methods on four

real-world datasets.

5.4.1 Datasets

The proposed models are evaluated on four real-world datasets from various domains with

different sparsities: citeulike-a [84], movielens-20M [121], Amazon-Books and Amazon-
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CDs [122]. The citeulike-a dataset provides user preferences on articles as well as article

titles, abstracts, and citations. The movielens-20M is a user-movie dataset where the

movie description is crawled from TMDB2. The Amazon-Books and Amazon-CDs datasets

are adopted from the Amazon review dataset3, which covers a large amount of user-item

interaction data, e.g., review, rating, helpfulness rating of the review. We select the user

review with the highest helpfulness rating as the item’s description. In order to be consistent

with the implicit feedback setting, we keep those with ratings no less than four (out of five)

as positive feedback and treat all other ratings as missing entries on the last three datasets.

Since items in the latter three datasets do not inherently have the item-item relations, we

compute the item-item similarity from binary rating matrix R and set the threshold as 0.2

to select neighbors of items. To filter noisy data, we only keep the users with at least ten

ratings and the items at least with five ratings. The data statistics after preprocessing are

shown in Table 5.1. For each user, we randomly select 20% and 10% of her rated items

for testing and validation, respectively. The remaining constitutes the training set. The

random selection is carried out five times independently, and we report the average results.

Table 5.1 The statistics of datasets.
Dataset #Users #Items #Ratings #Words Density

citeulike-a 5,551 16,980 204,986 8,000 0.217%
ML20M 138,493 18,307 19,977,049 12,397 0.788%
Books 65,476 41,264 1,947,765 27,584 0.072%
CDs 24,934 24,634 478,048 24,341 0.078%

5.4.2 Evaluation Metrics

We evaluate our model versus other methods in terms of Recall@k and NDCG@k. For each

user, Recall@k (R@k) indicates what percentage of her rated items can emerge in the top

k recommended items. NDCG@k (N@k) is the normalized discounted cumulative gain at

k, which takes the position of correctly recommended items into account.

2https://www.themoviedb.org/
3http://jmcauley.ucsd.edu/data/amazon/
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5.4.3 Methods Studied

To demonstrate the effectiveness of our model, we compare to the following recommendation

methods.

Classical methods for implicit feedback :

• WRMF, weighted regularized matrix factorization [20], which minimizes the squared

error loss by assigning user rated and unrated items with different confidential values.

• CDAE, collaborative denoising autoencoder [46], which utilizes the denoising au-

toencoder to learn the user hidden representation from implicit feedback.

Methods learning from bag-of-words :

• CDL, collaborative deep learning [35], is a probabilistic feedforward model for joint

learning of stacked denoising autoencoder (SDAE) and collaborative filtering.

• CVAE, collaborative variational autoencoder [43], is a generative latent variable

model that jointly models the generation of content and rating and uses variational

Bayes with inference network for variational inference.

• CML+F, collaborative metric learning with item features [22], which learns a metric

space to encode not only users’ preferences but also the user-user and item-item

similarities.

Methods learning from word sequences :

• ConvMF, convolutional matrix factorization [90], which applies the convolutional

neural network (CNN) to capture contextual information of documents and integrates

CNN into the probabilistic matrix factorization (PMF).

• JRL, joint representation learning [88], is a framework that learns joint representa-

tions from different information sources for top-K recommendation.

The proposed method :

• GATE, the proposed model, fuses hidden representations from items’ ratings and

contents by a gating layer, moreover, the word-attention and neighbor-attention are

adopted for selecting informative words and learning hidden representations of items’

neighborhoods, respectively.
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Given our extensive comparisons against the state-of-the-art methods, we omit compar-

isons with methods such as HFT [83], CTR [84], SVDFeature [123], and DeepMusic [124]

since they have been outperformed by the recently proposed CDL, CVAE, and JRL.

5.4.4 Experiment Settings

In the experiments, the latent dimension of all the models is set to 50. WRMF adopts

the same heuristic weighting function with the proposed model. For CDAE, we follow

the settings in the original paper. For CDL, we set a = 1, b = 0.01, and find that when

λu = 1, λv = 10, λn = 100, and λw = 0.0001 can achieve good performance. For CVAE,

the parameters a = 1, b = 0.01 are the same. When λu = 0.1, λv = 10, λr = 0.01, CVAE

can achieve good performance. For CML+F, we follow the author’s code to set the margin

m = 2.0, λf = 0.1, and λc = 1, respectively. The item features are learned by a multi-layer

perceptron with a 512-dimensional hidden layer and 0.3 dropout. For ConvMF, we set the

CNN configuration the same as the original paper and find it can achieve a good result

when a = 1, b = 0.01, λu = 0.1, and λv = 10. For JRL, we follow the original paper setting

to set batch size as 64, the number of negative samples t = 5, and λ1 = 1. The network

architectures of above methods are also set the same with the original papers.

For GATE, the ratings of an item are a binary rating vector from all users; the content

of an item is the word sequence from its description. We set the maximum length of the

word sequence to 300, and the same setting is also adopted in ConvMF and JRL. Hyper-

parameters are set by grid search. The network architecture is set to [m, 100, 50, 100,m] on

all datasets. ρ is set to 5 on citeulike-a, 20 on movielens-20M, 15 on Amazon-Books, and

20 on Amazon-CDs, respectively. da is set to 20, where its effect is shown in Section 5.4.6.

The learning rate and λ are set to 0.01 and 0.001, respectively. The activation function

is set to tanh. And the batch size is set to 1024. Our experiments are conducted with

PyTorch4 running on GPU machines of Nvidia GeForce GTX 1080 Ti5.

5.4.5 Performance Comparison

The performance comparison results are shown in Figures 5.2, 5.3, 5.4 and 5.5, and Table

5.2. Since CDAE is not as good as other state-of-the-art methods when the dataset becomes

4https://pytorch.org/
5The code is available on Github: https://github.com/allenjack/GATE

https://github.com/allenjack/GATE
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Figure 5.2 The performance comparison on citeulike-a.

sparse, we do not present the results of CDAE in the aforementioned figures.

Table 5.2 The performance comparison of all methods in terms of Recall@10
and NDCG@10. The best performing method is boldfaced. The underlined
number is the second best performing method. ∗, ∗∗, ∗ ∗ ∗ indicate the sta-
tistical significance for p <= 0.05, p <= 0.01, and p <= 0.001, respectively,
compared to the best baseline method based on the paired t-test. Improv.
denotes the improvement of our model over the best baseline method.

WRMF CDAE CDL CVAE CML+F ConvMF JRL GATE Improv.
Recall@10

citeulike-a 0.0946 0.0888 0.1317 0.1371 0.1283 0.1153 0.1325 0.1419 3.50%
movielens-20M 0.1075 0.0751 0.1287 0.1303 0.1123 0.1201 0.1401 0.1625** 15.99%
Amazon-Books 0.0553 0.0132 0.0648 0.0632 0.0756 0.0524 0.0924 0.1133* 22.62%
Amazon-CDs 0.0779 0.0191 0.0827 0.0811 0.0824 0.0753 0.0816 0.1057*** 27.81%

NDCG@10
citeulike-a 0.0843 0.0736 0.0949 0.0952 0.1035 0.0914 0.0982 0.1082 4.54%

movielens-20M 0.1806 0.1774 0.1836 0.1939 0.2479 0.1807 0.2439 0.2992** 20.69%
Amazon-Books 0.0377 0.0105 0.0393 0.0384 0.0456 0.0324 0.0592 0.0708*** 19.59%
Amazon-CDs 0.0357 0.0105 0.0356 0.0349 0.0364 0.0323 0.0386 0.0477*** 23.58%

Observations about our model:

First, the proposed model—GATE, achieves the best performance on three datasets

with all evaluation metrics, except for the Recall@15 and Recall@20 on citeulike-a, which

illustrates the superiority of our model.

Second, GATE obtains better results than JRL and ConvMF. Although JRL and Con-

vMF capture the contextual information in item descriptions by the doc2vec model [89] and
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Figure 5.3 The performance comparison on movielens-20M.
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Figure 5.4 The performance comparison on Amazon-Books.

the convolutional neural network, respectively, they equally treat each word of items, which

does not consider the effects of informative words, leading to the incomplete understanding

of item content information.

Third, GATE outperforms CML+F, CVAE, and CDL. The reasons are two-fold: (1)

these three methods learn the item content representation through bag-of-words, which

neglects the effect that important words can describe the topics or synopses of items; (2)

these three methods link the hidden representations from different data sources by a regu-
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Figure 5.5 The performance comparison on Amazon-CDs.

larization term, which may not smoothly balance the effects of various data representations

and incur tedious hyper-parameter tuning.

Fourth, GATE achieves better results than WRMF and CDAE. The reason is that

these two methods do not incorporate the content information, which is crucial when the

user-item interaction data is sparse.

Fifth, it is important to note that all the compared methods do not consider the user

preference on an item’s neighborhood, which is captured by the neighbor-attention module

of GATE.

Sixth, GATE does not significantly improve the performance over other methods on the

citeulike-a dataset. One possible reason is that the citeulike-a dataset is relatively small,

which makes GATE overfit the data.

Other observations:

First, all the results reported on citeulike-a and movielens-20M are better than the

results on Amazon-Books and Amazon-CDs, the major reason is that the latter two datasets

are more sparse and the data sparsity declines the recommendation performance.

Second, JRL and CML+F perform better than other state-of-the-art methods on more

sparse datasets. The reason may be that JRL models the contextual information in the

item descriptions, which captures the word-word relations in the text. On the other hand,

CML+F encodes user-item relationships and user-user/item-item similarities in a joint

metric space, which are helpful to find users’ preferred items when the data is sparse.
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Third, although ConvMF models the contextual information from items’ descriptions,

it still does not perform better than JRL, CML+F, CVAE, and CDL. One possible reason

is that the regularization term in ConvMF does not effectively pick up the latent features

learned from text to benefit the item latent factors learned from matrix factorization.

Fourth, CVAE and CDL achieve similar results on all datasets. One reason is that they

have a similar Bayesian probabilistic framework.

Fifth, WRMF and CDAE only adopt implicit feedback as input and do not model

the auxiliary information, that is why their performance drops when the dataset becomes

sparse. In addition, WRMF has similar results with CDL and CVAE on some metrics, which

may illustrate that CDL and CVAE may not fully take advantage of the heterogeneous data.

Table 5.3 The ablation analysis on Amazon-CDs and Amazon-Books
datasets in terms of Recall@10 (R@10) and NDCG@10 (N@10).

Architecture
CDs Books

R@10 N@10 R@10 N@10

(1) stacked AE 0.0672 0.0315 0.0745 0.0484
(2) reg: AE + W Att 0.0676 0.0318 0.0304 0.0265
(3) gating: AE + W Att 0.0816 0.0353 0.0793 0.0515
(4) gating: AE + GRU 0.0818 0.0352 0.0789 0.0512
(5) gating: AE + CNN 0.0777 0.0335 0.0791 0.0495
(6) GATE 0.1057 0.0477 0.1133 0.0708

5.4.6 Ablation Analysis

To verify the effectiveness of the proposed word-attention, gating layer, and neighbor-

attention modules, we conduct an ablation analysis in Table 5.3 to demonstrate the per-

formance each module contributes to the GATE model. In (1), we utilize the weighted

stacked AE without any other components. In (2), we regularize zri and zci the by L2 norm

on the top of (1), following the same manner in [35,43]. We tried the regularization param-

eters {0.01, 0.1, 0.5, 1, 10}, where 0.1 gives the best results. In (3), we plug the gating layer

to connect zri and zci on the top of (1). In (4), we adopt the a recurrent neural network

structure–gated recurrent units (GRUs) [125] to learn zci , which is also linked to zri by the

proposed gating layer. In (5), we replace the GRUs in (4) with a convolutional neural

network (CNN), where the structure and hyper-parameters are set the same in [90]. In
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Figure 5.6 The effects of ρ and da.

(6), we present the overall GATE model to show the significance of the neighbor-attention

module.

From the results shown in Table 5.3, we have some observations. First, from (2) and (3),

the gating layer achieves better results than regularization. One possible reason is that the

neural gate can extract representative parts and mask off insignificant parts from the input

hidden representations. Second, from (3), (4), and (5), we observe that our word-attention

module has similar performance with GRUs and CNNs but with fewer parameters6 (if

we set the word embedding size to 50 (h = 50), then the number of learned parameters

of our word-attention module is 3,590, the number of parameters of the one-recurrent-

layer GRU is 15,300, the number of parameters of the CNN in [90] is 75,350). This result

demonstrates that the proposed word-attention module can effectively learn the item hidden

representation from items’ descriptions. Third, from (1), (3), and (6), we observe that our

neighbor-attention may play a critical role in the overall model. The results demonstrate

that modeling users’ preferences on an item’s neighborhood is an effective supplement for

inferring their preferences on this item.

6We verified the number of parameters of all three models by the named parameters() function provided
by PyTorch.



62
Neural Networks for Content-aware Recommendation: Incorporating Content

Information

5.4.7 The Sensitivity of Hyper-parameters

The effects of ρ and da are shown in Figure 5.6, which have similar trends on other datasets.

We can observe that with the increase of ρ, the performance improves and becomes stable.

The reason is that the larger value of ρ makes the model concentrate more on the items

that users interacted with before, where users’ preferences are more accurately captured.

For the variation of da, we verify that utilizing a vector to measure the importance of

a word is more effective than just using a single value in our scenario because the score

vector describes the relations between each word from different aspects. Note that we do

not include the neighbor-attention module when testing the effect of da.

Table 5.4 A case study of the word-attention.
The Summary of Article 16797 in citeulike-a

We present the first parallel

implementation of the T-Coffee consistency-

based multiple aligner . We benchmark it

on the Amazon Elastic Cloud (EC2) and
show that the parallelization procedure

is reasonably effective . We also conclude

that for a web server with moderate
usage (10K hits/month) the cloud provides

a cost-effective alternative to in-house
deployment.

The Summary of Article 120 in citeulike-a

We identify a metaphor for the design

activity : we view design as bricolage.

We start from describing bricolage, and we

proceed to the relationship of design to art .

We obtain a characterisation of design that

enables us to show that both traditional and
contemporary design are forms of bricolage.

We examine the consequences of ’ design as

bricolage’ for the relationship between design

and science and for the extent of the design

activity .
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5.4.8 Word- and Neighbor-Attention Case Studies

Table 5.5 A case study of the importance scores computed by the neighbor-
attention module. The number inside (·) indicates the number of fluctuation’s
occurrences excluding references in an article.

Target Neighbor Score

Fluctuations in network dynamics

Genomic analysis of regulatory network dynamics reveals
large topological changes (0)

0.07172

Frequency of occurrence of numbers in the World Wide Web
(10)

0.22090

Complex networks: Structure and dynamics (16) 0.26835

Noise in protein expression scales with natural protein abun-
dance (36)

0.43903

To visualize the word-attention effects, we conduct a case study on the citeulike-a

dataset. We sum along the first dimension of Ai ∈ Rda×li (Eq. 5.4) to get ai ∈ Rli ,

which can be treated as the accumulated attention weights of each word. For the ease of

visualization, we normalize ai following the same procedure in [111] and words with lower

scores are not colored. Two examples of word-attention visualization are shown in Table

5.4. From the first example, we can observe that the words aligner and cloud have the

highest importance scores, which may reflect the topic and platform of this paper. On the

other hand, the words present, show, and conclude are widely used in all the papers, which

are less attractive. In the second example, the situation is the same. The most important

word that selected by the word-attention is metaphor, which may reveal the motif of the

article.

The neighbor-attention case study is shown in Table 5.5. The neighbors of the target

article are provided by the citation graph of the citeulike-a dataset. From this case, we

observe that the neighbor attention score can identify an item’s important neighbors. In

the example, the target article finds a scaling rule in network dynamics, and the fourth

neighbor of the target also observes the same scaling behavior for all groups of genes.

If we treat fluctuation as the key topic of the target article, the number of fluctuation’s

occurrences in the target’s neighbors may reveal how related the target with its neighbors.

We also list the count of fluctuation within the article body. The counts of fluctuation

further verify the importance scores computed by our neighbor-attention module.
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5.5 Summary

In this chapter, we propose a gated autoencoder with the word- and neighbor-attention.

The model learns items’ hidden representations from ratings and contents in a gated man-

ner. Moreover, the model also captures items’ informative words and representative neigh-

bors by word- and neighbor-attention modules, respectively. Experimental results on four

real-world datasets clearly validate the performance of our model over many state-of-the-art

methods and show the effectiveness of the gating and attention modules.
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Chapter 6

Neural Networks for Sequential

Recommendation: Modeling

Temporal Dynamics

6.1 Introduction

In all sorts of Internet services and applications, users browse items or products in a se-

quential order, where the items the user will browse may be closely related to those items

that the user just accessed. This property enables a non-trivial recommendation task—

sequential recommendation that considers the history of user actions as an activity series

organized by the operating timestamp. For one key reason, it is difficult to conduct this

task: the hardship of inferring the short-term interests and intentions of users. Indeed, the

actions of users on products are decided together by both the long-term and short-term

interests of users. With the large amount of accumulated data, the long-term user interests

can be effectively modeled. However, in a short-term time context, how to make good use

of temporal dynamics to forecast the user behavior in the near future is non-trivial.

To capture the sequential dynamics in the user action history, effective models are

proposed to learn the short-term user preference in the sequential user interactions, such

as Markov Chains (MCs), convolutional neural networks (CNNs), and recurrent neural

networks (RNNs). MC-based methods [94, 95] apply a K-order Markov chain to make

recommendations based on the K previous actions. CNN-based methods [96] utilize convo-
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lutional filters and sliding window strategies to capture the short-term contexts for future

prediction. RNN-based methods [97, 98, 100] adopt gated recurrent (GRU) or long short-

term memory (LSTM) units to learn the user-item sequence, where the short-term user

interests are captured by the hidden states of RNNs.

While existing approaches have proposed successful models and obtained acceptable

performance, we argue that there are still several avenues for further improving the model

performance. First, previous studies [96–98, 100] learn the user action sequence by CNN

or RNN structures, which does not pay special attention to the specific parts of features

of different items. Neglecting the representative characteristics of items in a short-term

period can fail to catch the true interests of users. Second, these approaches based on

CNN or RNN often do not distinguish the importance of items according to the tastes of

users. It can result in an inadequate interpretation of user intentions if considering these

informative items along with other items equally. Third, it is also important to note that

the relations between items are disregarded in previous works [96,100,101]. It has a larger

chance that users will interact with closely relevant items one after the other. As such, the

explicit capture of the item-item relationship can significantly benefit anticipating the user

engagement of potential items.

To solve the problems described above, we propose a novel recommendation model,

the hierarchical gating network (HGN), for the sequential recommendation without the

use of complex recurrent or convolutional neural networks. HGN is integrated with the

matrix factorization model and optimized by the Bayesian Personalized Ranking (BPR)

objective [37], which consists of a feature gating module, an instance gating module, and

an item-item product module. In particular, the feature gating module allows the adaptive

selections of attractive latent features within a certain item based on the user preference.

Then the selected user-specific features of items will be passed to the instance gating mod-

ule. At the instance gating module, important items that can reflect the short-term user

interests will be distinguished and selected to predict what items the user will interact with

in the future. Thus, the feature gating and instance gating modules form a hierarchical

gating network to control what informative features or items can be passed to the down-

stream layers. Item-item relations, on the other hand, provide valuable auxiliary knowledge

to predict the sequential actions of users, as users may access closely relevant items one

after the other. Thus, we apply an item-item product module to explicitly capture the

relations between the items users have interacted with and those items users will interact
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with in the future. We extensively evaluate our model with many state-of-the-art methods

and different validation metrics on five real-world datasets. The experimental results not

only demonstrate the improvements of our model over other baselines but also show the

effectiveness of the gating and item-item product modules.

To summarize, the major contributions of this chapter are listed as follows:

• To infer the user interests in a short-term context, we propose a hierarchical gating net-

work to control what item latent features and which relevant item can be passed to the

downstream layers. Our hierarchical gating network achieves better performance com-

pared with complex recurrent or convolutional neural networks yet with fewer parameters

and faster training speed.

• To explicitly capture the item-item relations, we utilize an item-item product module to

learn the relationships between the items users have interacted with and those items the

user will interact with in the near future.

• Experiments on five real-world datasets show that the proposed HGN model significantly

outperforms the state-of-the-art methods for the sequential recommendation task.

6.2 Problem Formulation

The recommendation task considered in this paper takes sequential implicit feedback as

training data. The user preference is presented by a user-item sequence in the chronological

order S i = (S i1,S i2, ...,S i|Si|), where S ij is an item index that user i has interacted with. Given

the earlier subsequence S i1:t(t < |S i|) of M users, the problem is to recommend a list of

items from N items for each user and evaluate whether the items in S it:|Si| will appear in

the recommended list.

Here, following common symbolic notation, upper case bold letters denote matrices,

lower case bold letters denote column vectors without any specification, and non-bold

letters represent scalars. The major symbols are listed in Table 6.1.

6.3 Methodologies

To model the sequential recommendation task, for each user i, we extract every |L|, i.e.

L = (S ij,S ij+1, ...,S ij+|L|−1), successive items as input and their next |T | items as the targets
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Table 6.1 List of notations.
M , N the number of users and items
S i the item sequence of user i
Si,l the embeddings of the l-th subsequence of user i
Wg∗ ,wg∗ the learnable parameters in the gating layers
U the user embedding matrix
E the input item embedding matrix
Q the output item embedding matrix
d the dimension of the embeddings
r̂i,j the prediction score of user i on item j
λ the regularization term

(a) Feature gating (b) Instance gating (c) Item-item product

Figure 6.1 An illustrative example of the feature gating, instance gating,
and item-item product modules. In Figure 6.1a, the gray lines on items denote
those latent features are masked off. In Figure 6.1b, the darker blue means
the item is more important. In Figure 6.1c, the line linked between two items
denotes the inner product, which captures the relations between the items
users have accessed and the items users will access in the future.

to be predicted. The problem can be formulated as: in the user-item interaction sequence

S i, given the |L| successive items, how likely other items will be interacted subsequently.

In the sequential recommendation problem, the prediction of users’ preferences on items

can be modeled in two perspectives: long-term interests and short-term interests. The

long-term user preference modeling has been widely investigated in the conventional top-

K recommendation methods, such as matrix factorization [20, 37]. On the other hand,

how to capture the short-term user interests from the sequential data is the key point for

performance improvement.

For the short-term interest modeling, we argue that there are two kinds of relationships

existing between items users have interacted with and items users will access in the future:

group-level and instance-level relations. The group-level influence illustrates a phenomenon

that several items in L together have an impact on the items user may interact in the future.

For example, if a user has bought a bed frame and a mattress, a pillow is probably a more
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suitable recommendation than a brand-new burger. On the other hand, the instance-level

influence depicts the strong relation between a single item in L and a single item in T . For

example, if a user bought a mobile phone, she may also need to buy a screen protector or

a case. Thus, these two kinds of relations together determine users’ short-term interests.

In this section, we introduce the proposed model to capture both the long-term interests

and short-term interests of users for the sequential recommendation, which is shown in

Figure 6.1 and Figure 6.2. We first illustrate the hierarchical gating network for learning

users’ group-level preferences. Next, we present the inner product of item embeddings to

model the item-item relations. Then we introduce the prediction layer for aggregating the

long-term and short-term interests of users. Lastly, we go through the loss function and

training process of the proposed model.

6.3.1 Hierarchical Gating for Group-level Influence

In the sequential recommendation, taking advantage of the properties of sequential data

to learn the (sub)sequence representation is a critical point, where an item may be closely

related to its previous or subsequent items, or a group of previous items will have an

impact on future items. In previous works, researchers have utilized various methods

to model the group-level sequential interactions, e.g., convolutional neural networks [96],

recurrent neural networks [57, 97, 98, 100], and the self-attention model [101]. Different

from previous works, we propose a hierarchical gating network for modeling group-level

user-item interactions, which consists of two components: a feature gating module and an

instance gating module. These two modules allow the selection of effective latent features

and relevant items, respectively, for predicting the subsequent items. Our proposed gating

network is both effective and efficient (Section 6.4).

Feature Gating

Unlike previous works [96,100,101] that only operate on the item-level, we provide a learn-

able feature gating module to select salient latent features of items from the feature-level.

For a certain item, some parts of the latent features are more relevant to predict the sub-

sequent items. For example, for a big fan of Robert Downey Jr., after watching Iron Man I

and Iron Man II, it is better to recommend Iron Man III rather than Aquaman, although

Aquaman is also a superhero movie. Thus, to capture the representative item features
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Figure 6.2 The architecture of HGN. HGN consists of three major compo-
nents: the embedding layer, the hierarchical gating layer, and the prediction
layer. Specifically, F Gating denotes the feature gating module, I Gating de-
notes the instance gating module, Aggregation denotes the aggregation layer,
and ⊗ denotes the element-wise multiplication.

based on users’ preferences is a necessary point to capture.

Embedding Layer. In the proposed module, the input is a sequence of |L| items,

where each item is represented by a unique index. At the embedding layer, the item index

is converted into a low-dimensional real-valued dense vector representation by an item

embedding matrix E ∈ Rd×N , where d is the dimension of the item embedding and N

is the number of items. After converted by the embedding layer, the item subsequence

embeddings are represented as:

Si,l =

 | | |
... ej−1 ej ej+1 ...

| | |

 ,
where Si,l ∈ Rd×|L| indicates the embeddings of the l-th subsequence of user i, ej ∈ Rd is

the j-th column of the embedding matrix E.

Gated Linear Unit. Inspired by the gated linear unit (GLU) proposed by Dauphin

et al. in [126], which is utilized to control what information should be propagated for

predicting the next word in the language modeling task, we also adopt a similar model to
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select what features are relevant to predict future items. The GLU in the original paper is

shown:

(X ∗W + b)⊗ σ(X ∗V + c) ,

where X is the input embeddings, W, V, b, c are learnable parameters, σ is the sig-

moid function, ∗ is the convolution operation, and ⊗ is the element-wise product between

matrices.

Personalized Feature Gating. However, directly applying the GLU to select item

features does not explicitly consider the user preference on items. For a certain item, a

user may just focus a specific part of the item and neglect other unattractive parts. For

example, a user may only care about whether the starring role is Tom Cruise rather than

the movie content.

Therefore, to capture the item features that tailored to users’ preferences, we need to

modify the GLU to be user-specific. To reduce the number of learnable parameters, we

apply the inner product instead of the convolution operation in the original GLU (the

superscript F indicates the item sequence embeddings are learned from the feature gating

module):

SFi,l = Si,l ⊗ σ
(
Wg1 · Si,l + (Wg2 · ui)⊗outer 1|L| + bg ⊗outer 1|L|

)
, (6.1)

where ui ∈ Rd is the embedding of user i, Wg1 ,Wg2 ∈ Rd×d and bg ∈ Rd are learnable

parameters, ⊗ is the element-wise product between matrices, and ⊗outer is the outer prod-

uct between two vectors. By doing this, user-specific features of items can be passed to

downstream layers.

Instance Gating

Personalized Instance Gating. Since our formulated problem is: given |L| successive

items, how likely other items will appear after L in the near feature, we argue that there are

some items are more relevant in L to predict the items users will interact. However, existing

works either do not consider the representative items in L [96, 100] or apply attention

models to capture the representative items [99,101]. Unlike previous works benefiting from

attention models, we adopt an instance-level gating module to select the informative items
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that are helpful to predict items in the near future according to users’ preferences:

SIi,l = SFi,l ⊗ σ
(
(w>g3 · S

F
i,l)⊗outer 1|L| + (u>i ·Wg4)⊗outer 1|L|

)
, (6.2)

where SIi,l ∈ Rd×|L| is the sequence embedding after the instance gating, wg3 ∈ Rd, Wg4 ∈
Rd×|L| are learnable parameters. By applying the instance gating, the representative items

will contribute more to make predictions about the future items and irrelevant items will

be largely neglected.

Aggregation Layer. To make the item embeddings SIi,l into one group-level latent

representation, we can either apply average pooling or max pooling on SIi,l:

savgi,l = avg pooling (SIi,l) , (6.3)

smaxi,l = max pooling (SIi,l) , (6.4)

where savgi,l , s
max
i,l ∈ Rd. Since the item embeddings have manipulated by the feature-level

and instance-level gating modules, the informative features and items have been selected

and irrelevant ones have been eliminated. Thus, the average pooling will accumulate the

informative parts in these embeddings. On the other hand, max-pooling directly selects the

most representative features from each embedding to form the group-level representation.

6.3.2 Item-item Product

The relation between two single items is an important factor to model in the recommenda-

tion task and has been widely studied in many years [41,127], e.g., item-based collaborative

filtering methods utilizing the rating vectors of two items to calculate the similarity. How-

ever, most of the recent works [96, 100, 101] only consider the sequential recommendation

from the group-level, but do not explicitly capture the item-item relations between the

items in L and the items user will interact in the future. Since strongly related item pairs

will appear in L and T simultaneously. Unlike previous works, we apply the inner product

between the input item embeddings and the output item embeddings to capture the item

relations between L and T : ∑
ej∈Si,l

e>j ·Q ,
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where Q ∈ Rd×N is the output item embeddings, the sum of multiplication results captures

the accumulated item-item relation scores from each item in L to all other items.

6.3.3 Prediction Layer

After applying the hierarchical gating network to capture the short-term interests of users

and item-item product to capture the relevant item pairs, we adopt the classical matrix

factorization term to capture the global and long-time interests of users. Given the l-th

subsequence to predict, the prediction score of user i on item j is:

r̂i,j = u>i · qj + savg>i,l · qj +
1

|L|
∑

ek∈Si,l

e>k · qj , (6.5)

where qj ∈ Rd is the j-th column of the output item embedding Q. In the prediction

layer, the first term captures the user long-term interests, the second term models the user

short-term interests, and the third term reflects the relations between item pairs.

6.3.4 Network Training

As the training data is from the user implicit feedback, we optimize the proposed model by

the Bayesian Personalized Ranking objective [37]: optimizing the pairwise ranking between

the positive and non-observing items:

arg min
U,Q,E,Θ

∑
(i,Li,j,k)∈D

− log σ(r̂i,j − r̂i,k) + λ(||U||2 + ||Q||2 + ||E||2 + ||Θ||2) , (6.6)

where Li denotes one of the |L| successive items of user i, j denotes the item that in Ti,

and k denotes the randomly sampled negative item, Θ is the parameters in the gating

network, λ is the regularization parameter. By minimizing the objective function, the

partial derivatives with respect to all the parameters can be computed by gradient descent

with back-propagation. We apply Adam [112] to automatically adapt the learning rate

during the learning procedure.

Time complexity. The computational complexity of our model for each L is mainly

due to the feature gating layer and item-item product module, which is O(|L|d2 + |L|Nd)

(|L| is the length of L, d is the dimension of embeddings, and N is the number of items).

This computational complexity makes our model scalable on large datasets. We empirically
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test the training speed with other state-of-the-art methods and find that our model is faster

than other methods (Section 6.4.7).

6.4 Experiments

In this section, we evaluate the proposed model with state-of-the-art methods on five real-

world datasets1.

6.4.1 Datasets

The proposed model is evaluated on five real-world datasets from various domains with dif-

ferent sparsities: MovieLens-20M [121], Amazon-Books and Amazon-CDs [122], Goodreads-

Children and Goodreads-Comics [128]. MovieLens-20M is a user-movie dataset collected

from the MovieLens website, where this dataset has 20 million user-movie interactions. The

Amazon-Books and Amazon-CDs datasets are adopted from the Amazon review dataset2

with different categories, i.e., CDs and Books, which cover a large amount of user-item in-

teraction data, e.g., user ratings and reviews. Goodreads-Children and Goodreads-Comics

datasets3 are collected in late 2017 from goodreads website with different genres, and we

use the genres of Children and Comics. In order to be consistent with the implicit feed-

back setting, we keep those with ratings no less than four (out of five) as positive feedback

and treat all other ratings as missing entries on all datasets. To filter noisy data, we only

keep the users with at least ten ratings and the items at least with five ratings. The data

statistics after preprocessing are shown in Table 6.2.

For each user, we hold the 70% of interactions in the user sequence as the training set

and use the next 10% of interactions as the validation set for hyper-parameter tuning. The

remaining 20% constitutes the test set for reporting model performance. Note that during

the testing procedure, the input sequences include the interactions in both the training set

and validation set. The execution of all the models is carried out five times independently,

and we report the average results.

1The code is available on Github: https://github.com/allenjack/HGN
2http://jmcauley.ucsd.edu/data/amazon/
3https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

https://github.com/allenjack/HGN
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Table 6.2 The statistics of datasets.
Dataset #Users #Items #Interactions Density
ML20M 129,797 13,649 9,921,393 0.560%
Books 52,406 41,264 1,856,747 0.086%
CDs 17,052 35,118 472,265 0.079%

Children 48,296 32,871 2,784,423 0.175%
Comics 34,445 33,121 2,411,314 0.211%

6.4.2 Evaluation Metrics

We evaluate our model versus other methods in terms of Recall@k and NDCG@k. For each

user, Recall@k (R@k) indicates what percentage of her rated items can emerge in the top

k recommended items. NDCG@k (N@k) is the normalized discounted cumulative gain at

k, which takes the position of correctly recommended items into account.

6.4.3 Methods Studied

To demonstrate the effectiveness of our model, we compare to the following recommendation

methods.

Classical methods for implicit feedback :

• BPRMF, the Bayesian Personalized Ranking based matrix factorization [37], which

is a classic method for learning pairwise personalized rankings from user implicit

feedback. Specifically, we use BPR-MF for model learning.

State-of-the-art session-based recommendation methods :

• GRU4Rec, gated recurrent unit for recommendation [97], which uses recurrent neu-

ral networks to model user-item interaction sequences for session-based recommen-

dation. Each user sequence is treated as a session.

• GRU4Rec+, an improved version of GRU4Rec [100], which adopts a more effective

loss function and sampling strategy, and shows significant performance gains on top-K

recommendation compared with GRU4Rec.

• NextItNet, the next item recommendation net [129], applies dilated convolutional

neural networks to increase the receptive fields without relying on the pooling oper-

ation.
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State-of-the-art sequential recommendation methods :

• Caser, convolutional sequence embedding model [96], which captures high-order

Markov chains by applying convolution operations on the embeddings of the |L|
recent items.

• SASRec, self-attention based sequential model [101], which uses an attention mech-

anism to identify relevant items for predicting the next item.

The proposed method :

• HGN, the proposed model, applies a hierarchical gating network to learn the group-

level representations of a sequence of items and adopts the item-item product to

explicitly capture the item-item relations.

Given our extensive comparisons against the state-of-the-art methods, we omit com-

parisons with methods such as FMC and FPMC [94], Fossil [95], since they have been

outperformed by the recently proposed Caser and SASRec.

6.4.4 Experiment Settings

In the experiments, the latent dimension of all the models is set to 50. For those session-

based methods, we treat each user sequence as one session. For GRU4Rec and GRU4Rec+,

we find that when the learning rate is 0.001, and batch size is 50 can achieve good perfor-

mance. These two methods adopt Top1 loss and BPR-max loss, respectively. For NextIt-

Net, we following the original settings in the paper to set the learning rate to 0.001, the

kernel size to 3, the dilated levels to 1 and 2, the batch size to 32. For Caser, we follow

the settings in the author-provided code to set |L| = 5, |T | = 3, the number of horizontal

filters to 16, the number of vertical filters to 4, where Caser can achieve good results. For

SASRec, we set the number of self-attention blocks to 2, the batch size to 128, and the

maximum sequence length to 50. The network architectures of the above methods are also

set the same as the original papers. The hyper-parameters are tuned using the validation

set.

For HGN, we follow the same setting in Caser to set |L| = 5 and |T | = 3, where the

length effects are shown in the Section 6.4.8. Hyper-parameters are tuned by grid search on

the validation set. The network embedding size d is also set to 50. The learning learning
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rate and λ are set to 0.001 and 0.001, respectively. The batch size is set to 4096. Our

experiments are conducted with PyTorch4 running on GPU machines (Nvidia GeForce

GTX 1080 Ti).

6.4.5 Performance Comparison

The performance comparison results are shown in Figures 6.3, 6.4, 6.5, 6.6, 6.7, and Table

6.3.

Table 6.3 The performance comparison of all methods in terms of Recall@10
and NDCG@10. The best performing method is boldfaced. The underlined
number is the second best performing method. ∗, ∗∗, ∗ ∗ ∗ indicate the sta-
tistical significance for p <= 0.05, p <= 0.01, and p <= 0.001, respectively,
compared to the best baseline method based on the paired t-test. Improv.
denotes the improvement of our model over the best baseline method.

BPRMF GRU4Rec GRU4Rec+ NextItRec Caser SASRec HGN Improv.
Recall@10

MovieLens-20M 0.0774 0.0804 0.0904 0.0833 0.1169 0.1069 0.1255* 7.36%
Amazon-Books 0.0260 0.0266 0.0301 0.0303 0.0297 0.0358 0.0429*** 19.83%
Amazon-CDs 0.0269 0.0302 0.0356 0.0310 0.0297 0.0341 0.0426** 19.66%

GoodReads-Children 0.0814 0.0857 0.0978 0.0879 0.1060 0.1165 0.1263* 8.41%
GooReads-Comics 0.0788 0.0958 0.1288 0.1078 0.1473 0.1494 0.1743*** 16.67%

NDCG@10
MovieLens-20M 0.0785 0.0815 0.0946 0.0828 0.1116 0.1014 0.1195* 7.07%
Amazon-Books 0.0151 0.0157 0.0173 0.0174 0.0216 0.0240 0.0298*** 24.17%
Amazon-CDs 0.0145 0.0154 0.0171 0.0155 0.0163 0.0193 0.0233** 20.73%

GoodReads-Children 0.0664 0.0715 0.0821 0.0720 0.0943 0.1007 0.1130* 12.21%
GoodReads-Comics 0.0713 0.0912 0.1328 0.1171 0.1629 0.1592 0.1927*** 18.29%

Observations about our model:

First, the proposed model—HGN, achieves the best performance on five datasets with

all evaluation metrics, which illustrates the superiority of our model.

Second, HGN achieves better performance than SASRec. The reasons are three-fold:

(1) SASRec only applies the instance-level selection but neglecting the feature-level one,

which plays an important role in learning short-term user interests (Section 6.4.6); (2) SAS-

Rec adopts a hyper-parameter—the maximum sequence length to reduce the computation

burden, where only using part of the user data may lead to the insufficient understanding

of long-term user interests; (3) SASRec does not explicitly model the item-item relations

between two closely relevant items, which is captured by our item-item product module.

4https://pytorch.org/
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(a) Recall@k on MovieLens-20M
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Figure 6.3 The performance comparison on MovieLens-20M.
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(a) Recall@k on Amazon-Books
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(b) NDCG@k on Amazon-Books

Figure 6.4 The performance comparison on Amazon-Books.

Third, HGN outperforms Caser, one major reason is that Caser only applies CNNs to

learn the group-level representation of several successive items without considering the item

importance for different users.

Fourth, HGN obtains better results than GRU4Rec, GRU4Rec+, and NextItNet. Two

possible reasons are: (1) these models are session-based methods without explicitly mod-

eling the long-term user interests; (2) these methods equally treat all the items in a short

context, which may fail to capture the short-term user intentions.
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(a) Recall@k on Amazon-CDs
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(b) NDCG@k on Amazon-CDs

Figure 6.5 The performance comparison on Amazon-CDs.
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(a) Recall@k on Children
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(b) NDCG@k on Children

Figure 6.6 The performance comparison on Children.

Fifth, HGN outperforms BPRMF. Since BPRMF only captures the long-term interests

of users, which does not incorporate the sequential patterns of user-item interactions. On

the top of BPRMF, HGN adopts a hierarchical gating network to capture the sequential

dynamics in the user actions and an item-item product module to explicitly capture the

item-item relations, which leads to better performance.

Other observations:

First, all the results reported on MovieLens-20M, GoodReads-Children and GoodReads-
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(a) Recall@k on Comics
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Figure 6.7 The performance comparison on Comics.

Comics are better than the results on other datasets, the major reason is that other datasets

are more sparse and the data sparsity declines the recommendation performance.

Second, SASRec outperforms Caser on most of the datasets. The main reason is that

SASRec adaptively attends items that would reflect the short-term user interests.

Third, SASRec and Caser achieve better performance than GRU4Rec, GRU4Rec+, and

NextItNet in most cases. One possible reason is that SASRec and Caser both explicitly plug

the user embeddings in their models, which allows the long-term user interests modeling.

Fourth, GRU4Rec+ performs better than other methods on one dataset. The reason is

that GRU4Rec+ not only captures the sequential patterns in the user-item sequence but

also has a promising object function—BPR-max.

Fifth, all the methods perform better than BPR. This illustrates that only effectively

modeling the long-term user interests is not sufficient to capture the user sequential behav-

iors.

6.4.6 Ablation Analysis

To verify the effectiveness of the proposed feature gating, instance gating, and item-item

product modules, we conduct an ablation analysis in Table 6.4 to demonstrate the impor-

tance each module contributes to the HGN model. In (1), we utilize only the BPR matrix

factorization without any other components. In (2), we only incorporate the feature gat-
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Table 6.4 The ablation analysis on GoodReads-Comics and Amazon-Books
datasets. F denotes the feature gating module, I denotes the instance gating
module, avg denotes the average pooling, and max denotes the max pooling.

Architecture
Comics Books

R@10 N@10 R@10 N@10

(1) BPR 0.0911 0.0802 0.0310 0.0177
(2) BPR+F+avg 0.1555 0.1624 0.0361 0.0266
(3) BPR+F+max 0.1456 0.1550 0.0355 0.0240
(4) BPR+I+avg 0.1538 0.1591 0.0351 0.0254
(5) BPR+I+max 0.1489 0.1585 0.0329 0.0241
(6) BPR+GRU 0.1456 0.1581 0.0289 0.0216
(7) BPR+CNN 0.1305 0.1387 0.0278 0.0207
(8) BPR+F+I+avg 0.1635 0.1791 0.0391 0.0250
(9) BPR+F+I+max 0.1569 0.1658 0.0355 0.0234
(10) HGN 0.1743 0.1927 0.0429 0.0298

ing and apply the average pooling on the embeddings after the feature gating, on the top

of (1). In (3), we replace the average pooling in (2) with max pooling. In (4), we only

include the instance gating and apply the average pooling on the top of (1). In (5), we

replace the average pooling in (4) with max-pooling. In (6), we adopt a recurrent neural

network structure—gated recurrent unit (GRU) [125] to learn the group-level representa-

tions of items. In (7), we replace the GRU in (6) with a convolutional neural network

(CNN), where the structure and hyper-parameters are set the same in Caser [96]. In (8),

we both apply the feature and instance gating with average pooling. In (9), we replace the

average pooling with max pooling. In (10), we present the overall HGN model to show the

significance of the item-item product module.

From the results shown in Table 6.4, we have some observations. First, from (1) and

all others, we can observe that the conventional BPR matrix factorization to capture the

long-term user interests cannot effectively model the short-term user interests. Second,

from (2), (3), (4) and (5), the feature gating seems to achieve slightly better results than

the instance gating. And the average pooling is slightly better than the max pooling,

one possible reason is that the average pooling makes the representative item features

accumulated, which results in a more effective representation of a group of |L| successive

items. Third, from (6), (7), and (8), we observe that our hierarchical gating network
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achieves better performance than GRU and CNN but with fewer learnable parameters5 (if

we set the item embedding size to 50 (d = 50), then the number of learnable parameters

of our hierarchical gating network is 5,350, the number of parameters of the one-recurrent-

layer GRU is 15,300, the number of parameters of the CNN in [96] is 26,154). This result

demonstrates that the proposed hierarchical gating network can effectively capture the

sequential patterns in the user-item interaction sequence. Lastly, from (1), (8), and (9), we

observe that by incorporating the item-item product, the performance further improves.

The results demonstrate that explicitly capturing the relations between the items users

accessed and those items users may interact with in the future can provide a significant

supplement to model the user sequential dynamics.

6.4.7 Training Efficiency

In this section, we evaluate the training efficiency with other state-of-the-art methods in

terms of the training speed (time taken for one epoch of training). Since GRU4Rec+

has been compared with SASRec in [101], we omit the training time comparison with

GRU4Rec+. To make a fair comparison, we set the max sequence length of SASRec as 300

to cover more than 95% of the sequence. All the experiments are conducted on a single

GPU of Nvidia GeForce GTX 1080 Ti. All the compared methods are executed 20 epochs

and we report the average computation time, which is shown in Table 6.5. Note that the

time reported only includes the training time of models without including the negative

sampling time.

Table 6.5 The training time per epoch comparison on five datasets in terms
of seconds.

CDs Books ML20M Children Comics
HGN 0.957s 2.086s 28.304s 3.496s 2.228s

SASRec 2.242s 16.154s 39.937s 14.913s 10.468s
Caser 5.063s 17.577s 63.702s 28.593s 25.657s

From the results in Table 6.5, we can observe that HGN yields the fastest training speed

on all datasets. As we have discussed in section 6.3.4, our model has less item complexity

than SASRec, which is O(N2d + Nd2). Thus, our proposed model has better training

efficiency both theoretically and practically.

5We verified the number of parameters of all three models by the named parameters() function provided
by PyTorch.
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Table 6.6 The effect of the length |L| and |T |.

Settings
CDs Comics

R@5 R@10 R@5 R@10

|L|=3, |T |=1 0.0260 0.0415 0.1202 0.1684
|L|=3, |T |=2 0.0291 0.0448 0.1275 0.1758
|L|=3, |T |=3 0.0289 0.0450 0.1296 0.1793
|L|=5, |T |=1 0.0254 0.0417 0.1155 0.1645
|L|=5, |T |=2 0.0261 0.0432 0.1215 0.1711
|L|=5, |T |=3 0.0290 0.0456 0.1238 0.1738
|L|=8, |T |=1 0.0220 0.0372 0.1083 0.1566
|L|=8, |T |=2 0.0248 0.0401 0.1142 0.1636
|L|=8, |T |=3 0.0260 0.0413 0.1160 0.1658

10 20 30 40 50 60 70 80

d

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
ec

al
l@

k

Recall@5
Recall@10

Recall@15
Recall@20

(a) d on Children

10 20 30 40 50 60 70 80

d

0.10

0.15

0.20

0.25
R

ec
al

l@
k

Recall@5
Recall@10

Recall@15
Recall@20

(b) d on Comics

Figure 6.8 The dimension variations of embeddings.

6.4.8 The Sensitivity of Hyper-parameters

We present the effect of two hyper-parameters: the dimension of the item embeddings d

and the length of successive items |L| and |T |. The effects of these two parameters are

shown in Figure 6.8 and Table 6.6. Due to the space limit, we only present the effects on

two datasets, the parameter effects on other datasets have similar trends.

The variation of d is shown in Figure 6.8. We can observe that a small dimension of

item embeddings is not sufficient to express the latent features of items. By increasing the

dimension of item embeddings, the model has more capacity to model the complex features
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of items. With the increase of d, the model performance largely improves and becomes

steady.

The variation of |L| and |T | is shown in Table 6.6. We observe that when |L| is fixed, a

larger value of |T |, i.e. 3, can achieve better performance. This may illustrate that a group

of |L| items may determine several items that the user will interact with in the near future.

We also observe that smaller |L| has better results than larger ones. One possible reason

is that larger |L| may include too many irrelevant items for predicting future items.

6.5 Summary

In this chapter, we propose a hierarchical gating network with an item-item product module

for the sequential recommendation. The model adopts a feature gating module and an

instance gating module to control what item features can be passed to downstream layers,

where informative latent features and items can be selected. Moreover, we apply an item-

item product module to capture the relations between closely relevant items. Experimental

results on five real-world datasets validate the performance of our model over many baselines

and demonstrate the effectiveness of the gating and item-item product modules.
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Chapter 7

Neural Networks for Adaptive

Learning: Learning Personalized

Hyper-parameters

7.1 Introduction

In the personalized recommender system, modeling the user-item interaction lies at the

core. There are two common ways adopted in recent recommendation models to infer user

preference: matrix factorization (MF) and multi-layer perceptrons (MLPs). MF-based

methods (e.g., [20, 37]) apply the inner product between latent factors of users and items

to predict the user preferences for different items. The latent factors strive to depict

the user preference and item properties, respectively, in the latent space. In contrast,

MLP-based methods (e.g., [9, 130]) adopt (deep) neural networks to learn non-linear user-

item relationships. Compared to MF approaches that are limited by the inner product

calculation, MLPs can generate better latent feature combinations between the embeddings

of users and items [9].

However, both MF-based and MLP-based methods violate the triangle inequality [131],

and as a result may fail to capture the fine-grained preference information [22]. As a

concrete example in [69], if a user accessed two items, MF or MLP-based methods will

put both items close to the user, but will not necessarily put these two items close to each

other, even if they share similar properties.
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To address the limitations of MF and MLP-based methods, the metric (distance) learn-

ing approaches have been utilized in the recommendation model [22, 66, 69, 71], since the

distance naturally satisfies the triangle inequality. These approaches project users and

items into a low-dimensional metric space, where the user preference is measured by the

distance to items. Specifically, CML [22] and LRML [66] are two representative models.

CML minimizes the Euclidean distance between users and accessed items of users, which

benefits fine-grained user-user/item-item similarity learning. LRML incorporates a mem-

ory network [67] to introduce additional capacity to learn relations between users and items

in the metric space.

In spite of the fact that previous distance-based methods have achieved satisfactory

performance, we argue that several avenues are existing for further improving performance.

First, previous distance-based methods [22, 66, 69, 71] learn the user and item embeddings

in a deterministic manner without considering the uncertainty. Completely relying on

learned deterministic embeddings can lead to an incorrect interpretation of user preferences.

Second, most of the existing methods [22,66,69] adopt the margin ranking loss (hinge loss)

with a fixed margin, where the margin is a hyper-parameter. We argue that the margin

value should be adaptive and relevant to corresponding training samples. Furthermore,

different training phases may need different magnitudes of margin values. Setting a fixed

value may not be an optimal choice. Third, previous distance-based methods [22,66,69,71]

do not explicitly model user-user and item-item relationships. Closely-related users are

more likely to have the same preferences, and it is likely that a user would favor them

if two items have similar attributes. When inferring the preference of a user, we should

explicitly take into account the user-user and item-item similarities.

To address the aforementioned shortcomings, we propose a Probabilistic Metric Learn-

ing model with the Adaptive Margin (PMLAM) for the top-K recommendation. PMLAM

consists of three major components: (1) a user-item interaction module, (2) an adaptive

margin generation module, and (3) a user-user/item-item relation modeling module. To

catch the uncertainties of the learned user and item embeddings, each user or item is

parametrized with a Gaussian distribution, where the associated distribution parameters

are learned from our model. In the user-item interaction module, we take the Wasserstein

distance to calculate the distance between users and items, taking into account not only

the means but also the uncertainties. In the adaptive margin generation module, we model

the learning of adaptive margins as a bilevel (inner and outer) optimization problem [132],
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where we build a proxy function to explicitly link the learning of margin related parameters

with the outer objective function. Specifically, we apply a two-layer MLP to generate the

adaptive margins according to different training triplets. In the user-user and item-item

relation modeling module, we incorporate two margin ranking losses with adaptive margins

for similar user-pairs and item-pairs, respectively, to explicitly encourage similar users or

items to be mapped closer to one another in the latent space. We extensively evaluate our

model by comparing with many state-of-the-art methods, using two performance metrics on

five real-world datasets. The experimental results not only demonstrate the improvements

of our model over other baselines but also show the effectiveness of the proposed modules.

To summarize, the major highlights of this chapter are:

• To model the uncertainties in the learned user/item embeddings, we represent each user

and item as a Gaussian distribution. The Wasserstein distance is leveraged to measure

the user preference on items while simultaneously handling the uncertainty.

• To generate an adaptive margin, we treat the margin generation process as a bilevel

optimization problem, where we build a proxy function to explicitly update the margin

generation-related parameters.

• To explicitly model the user-user and item-item relationships, we apply two margin

ranking losses with adaptive margins to make similar users and items map closer to one

another in the latent space, respectively.

• Experiments on five real-world datasets show that the proposed PMLAM model signifi-

cantly outperforms the state-of-the-art methods for the top-K recommendation task.

7.2 Problem Formulation

The recommendation task considered in this chapter takes as input the user implicit feed-

back. For each user i, the user preference data is represented by a set that includes the

items she preferred, e.g., Di = {I1, ..., Ij, ..., I|Di|}, where Ij is an item index in the dataset.

The top-K recommendation task in this chapter is formulated as: given the training item

set Si, and the non-empty test item set Ti (requiring that Si ∪ Ti = Di and Si ∩ Ti = ∅)
of user i, the model must recommend an ordered set of items Xi such that |Xi| ≤ K and
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Xi ∩ Si = ∅. Then the recommendation quality is evaluated by a matching score between

Ti and Xi, such as Recall@K.

7.3 Methodology

In this section, we present the proposed model shown in Figure 7.1. We first introduce

the user-item interaction module, which captures the user-item interactions by calculating

the Wasserstein distance between users’ and items’ distributions. Then we describe the

adaptive margin generation module, which generates adaptive margins during the training

process. Next, we present the user-user and item-item relation modeling modules. Lastly,

we specify the objective function and explain the training process that is used to optimize

the proposed model.

Proxy function

Margin Generator

Model Demonstration

User & Item 
embeddings

User & Item 
embeddings

Adaptive Margin Generation Module

Adaptive Margin 
Generation Module

Gradient descent
update of       

Forward
propagation

Gradient descent 
update of

(a) The demonstration of PMLAM. (b) The demonstration of the margin generation module.

Figure 7.1 The demonstration of the proposed model. J U−I denotes the
combined optimization regarding J U−Iinner and J U−Iouter. J U−U and J I−I follow
the same manner with J U−I .

7.3.1 Wasserstein Distance for Interactions

Previous works [22,66] use the user and item embeddigns in a deterministic manner and do

not measure or learn the uncertainties of user preferences and item properties. Motivated

by probabilistic matrix factorization (PMF) [44], we represent each user or item as a single

Gaussian distribution. In contrast to PMF, which applies Gaussian priors on user and item

embeddings, users and items in our model are parameterized by Gaussian distributions,

where the means µ and covariances Σ are directly learned. Specifically, the latent factors
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of user i and item j are represented as:

ui ∼ N (µ
(U)
i ,Σ

(U)
i ) ,

vj ∼ N (µ
(I)
j ,Σ

(I)
j ) .

(7.1)

Here µ
(U)
i and Σ

(U)
i are the learned mean vector and covariance matrix of user i, respectively;

µ
(I)
j and Σ

(I)
j are the learned mean vector and covariance matrix of item j. To limit

the complexity of the model and reduce the computational overhead, we assume that the

embedding dimensions are uncorrelated. Thus, Σ is a diagonal covariance matrix that can

be represented as a vector. Specifically, µ ∈ Rh and Σ ∈ Rh, where h is the dimension of

the latent space.

Since the users and items are represented by probabilistic distributions, the widely used

distance metrics for deterministic embeddings like Euclidean distance may not properly

measure the distance between distributions. Thus, a distance measure between distribu-

tions is needed. Among the commonly used distance metric between distributions, we adopt

the Wasserstein distance to measure the user preference on items. The reasons are twofold:

(i) the Wasserstein distance satisfies all the properties a distance should have; and (ii)

the Wasserstein distance has a simple form when calculating the distance between Gaus-

sian distributions [133]. Formally, the p-th Wasserstein distance between two probability

measures µ and ν on a Polish metric space [134] (X , d) is defined as [135,136]:

Wp(µ, ν) :=
(

inf
J∈J (µ,ν)

∫
X×X

d(x, y)pdJ(x, y)
) 1

p
,

where d(·, ·)p is an arbitrary distance with pth moment [137] for a deterministic variable,

p ∈ [1,+∞); and J (µ, ν) denotes the set of all measures J on X × X which admit µ and

ν as marginals. When p ≥ 1, the p-th Wasserstein distance preserves all properties of a

metric, including both symmetry and the triangle inequality.

The calculation of the general Wasserstein distance is computation-intensive [138]. To

reduce the computational cost, we use Gaussian distributions for the latent representations

of users and items. Then when p = 2, the 2-nd Wasserstein distance (abbreviated as W2)

has a closed form solution, thus making the calculation process much faster. Specifically, we
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have the following formula to calculate theW2 distance between user i and item j [136,139]:

W2

(
N (µ

(U)
i ,Σ

(U)
i ), N (µ

(I)
j ,Σ

(I)
j )
)2

= ||µ(U)
i − µ

(I)
j ||22 + trace

(
Σ

(U)
i + Σ

(I)
j − 2

(
(Σ

(U)
i )

1
2 Σ

(I)
j (Σ

(U)
i )

1
2

) 1
2

)
.

(7.2)

In our setting, we focus on diagonal covariance matrices, thus Σ
(U)
i Σ

(I)
j = Σ

(I)
j Σ

(U)
i . For

simplicity, we use W2(i, j)2 to denote the left hand side of Eq. 7.2. Then Eq. 7.2 can be

simplified as:

W2(i, j)2 = ||µ(U)
i − µ

(I)
j ||22 + ||(Σ(U)

i )
1
2 − (Σ

(I)
j )

1
2 ||22 . (7.3)

According to the above equation, the time complexity of calculating W2 distance between

the latent representations of users and items is linear with the embedding dimension.

7.3.2 Adaptive Margin in Margin Ranking Loss

To learn the distance-based model, most of the existing works [22, 66] apply the margin

ranking loss to measure the user preference difference between positive items and negative

items. Specifically, the margin ranking loss makes sure the distance between a user and

a positive item is less than the distance between the user and a negative item by a fixed

margin m > 0. The loss function is:

LFix(i, j, k; Θ) = [d(i, j; Θ)2 − d(i, k; Θ)2 +m]+ , (7.4)

where j ∈ Si is an item that user i has accessed, and k 6∈ Si is a randomly sampled item

treated as the negative example, and [z]+ = max(z, 0). Thus, (i, j, k) represents a training

triplet.

The safe margin m in the margin ranking loss is a crucial hyper-parameter that has a

major impact on the model performance. A fixed margin value may not achieve satisfactory

performance. First, using a fixed value does not allow for adaptation to distinguish the

properties of the training triplets. For example, some users have broad interests, so the

margins for these users should not be so large as to make potential preferred items too

far from the user. Other users have very focused interests, and it is desirable to have a

larger margin to avoid recommending items that are not directly within the focus. Second,

in different training phases, the model may need different magnitudes of margins. For
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instance, in the early stages of training, the model is not reliable enough to make strong

predictions on user preferences, and thus imposing a large margin risks pushing potentially

positive items too far from a user. Third, to achieve satisfactory performance, the selection

of a fixed margin involves tedious hyper-parameter tuning. Based on these considerations,

we conclude that setting a fixed margin value for all training triplets may limit the model

expressiveness.

To address the problems outlined above, we propose an adaptive margin generation

scheme which generates margins according to the training triplets. Formally, we formulate

the margin ranking loss with an adaptive margin as:

LAda(i, j, k; Θ,Φ) = [d(i, j; Θ)2 − d(i, k; Θ)2 + f(i, j, k; Φ)]+ . (7.5)

Here f(i, j, k; Φ) is a function that generates the specific margin based on the corresponding

user and item embeddings and Φ is the learnable set of parameters associated with f(·).
Then we could consider optimizing Θ and Φ simultaneously:

Θ∗ = argmin
Θ,Φ

∑
i

∑
j∈Si

∑
k 6∈Si

LAda(i, j, k; Θ,Φ) . (7.6)

Unfortunately, directly minimizing the objective function as in Eq. 7.6 does not achieve

the desired purpose of generating suitable adaptive margins. Since the margin-related term

explicitly appears in the loss function, constantly decreasing the value of the generated

margin is the straightforward way to reduce the loss. As a result all generated margins

have very small values or are set to zero, leading to unsatisfactory results.

Bilevel Optimization

We model the learning of recommendation models and the generation of adaptive margins

as a bilevel optimization problem [140]:

min
Φ
Jouter (Θ∗(Φ)) :=

∑
i

∑
j∈Si

∑
k 6∈Si

LFix (i, j, k; Θ∗(Φ))

s.t.Θ∗(Φ) = argmin
Θ
Jinner(Θ,Φ) :=

∑
i

∑
j∈Si

∑
k 6∈Si

LAda(i, j, k; Θ,Φ) .
(7.7)
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Here Θ contains the model parameters µ and Σ. The objective function Jinner attempts

to minimize LAda with respect to Θ while the objective function Jouter optimizes LFix with

respect to Φ through Θ∗(Φ). For simplicity, the m of LFix in Jouter is set to 1 for guiding

the learning of f(·; Φ). Thus, we can have an alternating optimization to learn Θ and Φ:

• Θ update phase (Inner Optimization): Fix Φ and optimize Θ.

• Φ update phase (Outer Optimization): Fix Θ and optimize Φ.

Approximate Gradient Optimization

As most existing models utilize gradient-based methods for optimization, a simple approx-

imation strategy with less computation is introduced as follows:

∇ΦJouter (Θ∗(Φ)) ≈ ∇ΦJouter (Θ− α∇ΘJinner(Θ,Φ)) . (7.8)

In this expression, Θ denotes the current parameters including µ and Σ, and α is the learn-

ing rate for one step of inner optimization. Related approximations have been validated

in [11,141]. Thus, we can define a proxy function to link Φ with the outer optimization:

Θ̃(Φ) := Θ− α∇ΘJinner(Θ,Φ) . (7.9)

For simplicity, we use two optimizers OPTΘ and OPTΦ to update Θ and Φ, respectively.

The iterative procedure is shown in Alg. 2.

Algorithm 2: Iterative Optimization Procedure

1 Initialize optimizers OPTΘ and OPTΦ ;
2 while not converged do
3 Θ Update (fix Φt):
4 Θt+1 ←− OPTΘ (Θt,∇ΘtJinner(Θt,Φt)) ;
5 Proxy:

6 Θ̃t+1(Φt) := Θt − α∇ΘtJinner(Θt,Φt) ;
7 Φ Update (fix Θt):

8 Φt+1 ←− OPTΦ

(
Φt,∇ΦtJouter

(
Θ̃t+1(Φt)

))
;

9 end
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The design of f(·; Φ)

We parameterize f(i, j, k; Φ) with a neural network to generate the margin based on (i, j, k):

zijk = tanh(W1 · sijk + b1) ,

mijk = softplus(W2 · zijk + b2) ,
(7.10)

where W∗ and b∗ are learnable parameters in f(·; Φ), sijk is the input to generate the

margin, and mijk ∈ R is the generated margin of (i, j, k). The activation function softplus

guarantees mijk > 0. To make sijk be discriminative to reflect the relation between (i, j, k)

and mijk, we find the following form of sijk can be a fine-grained indicator:

χ(ui,vj) = [(ui,1 − vj,1)2, (ui,2 − vj,2)2, ..., (ui,h − vj,h)2]>

sijk = [χ(ui,vj); χ(ui,vk); χ(ui,vk)	 χ(ui,vj)] .
(7.11)

Here χ(ui,vj) ∈ Rh is introduced to mimic the calculation of Euclidean distance without

summing over all dimensions. 	 denotes element-wise subtraction and [...; ...] denotes

the concatenation operation. To improve the robustness of f(·; Φ), we take as inputs the

sampled embeddings ui and vj. In order to perform backpropagation from ui and vj, we

adopt the reparameterization trick [118] for Eq. 7.1:

ui = µ
(U)
i + (Σ

(U)
i )

1
2 � ε1 ,

vj = µ
(I)
j + (Σ

(I)
j )

1
2 � ε2 ,

(7.12)

where ε1, ε2 ∼ N (0,1) and � is the element-wise muliplication.

Discussion. Note that our adaptive margin generation scheme is a general module,

which can be plugged into many applications with margin ranking loss, such as computer

vision [142,143] and knowledge graphs [144,145].

7.3.3 User-User and Item-Item Relations

It is important to model the relationships between pairs of users or pairs of items when

developing recommender systems and strategies for doing so effectively have been studied

for many years [41, 127, 146]. For example, item-based collaborative filtering methods use

item rating vectors to calculate the similarities between the items. Closely-related users
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or items may share the same interests or have similar attributes. For a certain user, items

similar to the user’s preferred items are potential recommendation candidates.

Despite this intuition, previous distance-based recommendation methods [22,66] do not

explicitly take the user-user or item-item relationships into consideration. As a result of

relying primarily on user-item information, the systems may fail to generate appropriate

user-user or item-item distances. To model the relationships between similar users or items,

we employ two ranking margin losses with adaptive margins to encourage similar users or

items to be mapped closer together in the latent space. Formally, the similarities between

users or items are calculated from the user implicit feedback, which can be represented by

a binary user-item interaction matrix. We set a threshold on the calculated similarities to

identify the similar users and items for a specific user i and item j, respectively, denoted

as N U
i and N I

j . We adopt the following losses for user pairs and item pairs, respectively:{
J U−U
outer :=

∑
i

∑
p∈NU

i

∑
q 6∈NU

i
LFix(i, p, q; Θ̃t+1

U−U) ,

J U−U
inner :=

∑
i

∑
p∈NU

i

∑
q 6∈NU

i
LAda(i, p, q; Θt,Φt

U−U) ,
(7.13){

J I−I
outer :=

∑
j

∑
p∈N I

j

∑
q 6∈N I

j
LFix(j, p, q; Θ̃t+1

I−I) ,

J I−I
inner :=

∑
j

∑
p∈N I

j

∑
q 6∈N I

j
LAda(j, p, q; Θt,Φt

I−I) ,
(7.14)

where q is a randomly sampled user in Eq. 7.13 and a randomly sampled item in Eq. 7.14.

U − U denotes the user-user relation and I − I denotes the item-item relation. We use

Φt
U−U and Φt

I−I to update Θt+1
U−U and Θt+1

I−I , respectively, which are same as in Alg. 2. We

denote the indicator in Eq. 7.11 as sU−Iijk , then we generate sU−Uijq and sI−Iijq following the

procedure described by Eq. 7.11.

7.3.4 Model Training

Let us denote the losses J U−I
inner and J U−I

outer to capture the interactions between users and

items. Then we combine the loss functions presented in Section 7.3.3 to optimize the

proposed model:

Jinner = J U−I
inner + J U−U

inner + J I−I
inner ,

Jouter = J U−I
outer + J U−U

outer + J I−I
outer + λ||Φ||2F ,

(7.15)

where λ is a regularization parameter. We follow the same training scheme of Section 7.3.2

to train Eq. 7.15. To mitigate the curse of dimensionality issue [147] and prevent overfit-
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ting, we bound all the user/item embeddings within a unit sphere after each mini-batch

training: ||µ|| 6 1 and ||Σ|| 6 1. When minimizing the objective function, the partial

derivatives with respect to all the parameters can be computed by gradient descent with

back-propagation. We apply the Adam [112] algorithm to automatically adapt the learning

rate during the learning procedure.

Recommendation Phase. In the testing phase, for a certain user i, we compute the

distance W2(i, j)2 between user i and each item j in the dataset. Then the items that are

not in the training set and have the shortest distances are recommended to user i.

7.4 Experiments

In this section, we evaluate the proposed model, comparing it with the state-of-the-art

methods on five real-world datasets.

7.4.1 Datasets

The proposed model is evaluated on five real-world datasets from various domains with

different sparsities: Books, Electronics and CDs [122], Comics [128] and Gowalla [73]. The

Books, Electronics and CDs datasets are adopted from the Amazon review dataset with

different categories, i.e., books, electronics and CDs. These datasets include a significant

amount of user-item interaction data, e.g., user ratings and reviews. The Comics dataset

was collected in late 2017 from the GoodReads website with different genres, and we use the

genres of comics. The Gowalla dataset was collected worldwide from the Gowalla website

(a location-based social networking website) over the period from February 2009 to October

2010. In order to be consistent with the implicit feedback setting, we retain any ratings

no less than four (out of five) as positive feedback and treat all other ratings as missing

entries for all datasets. To filter noisy data, we only include users with at least ten ratings

and items with at least five ratings. Table 7.1 shows the data statistics.

We employ five-fold cross-validation to evaluate the proposed model. For each user,

the items she accessed are randomly split into five folds. We pick one fold each time as

the ground truth for testing, and the remaining four folds constitute the training set. The

average results over the five folds are reported.
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Table 7.1 The statistics of the datasets.
Dataset #Users #Items #Interactions Density
Books 77,754 66,963 2,517,343 0.048%

Electronics 40,358 28,147 524,906 0.046%
CDs 24,934 24,634 478,048 0.079%

Comics 37,633 39,623 2,504,498 0.168%
Gowalla 64,404 72,871 1,237,869 0.034%

7.4.2 Evaluation Metrics

We evaluate all models in terms of Recall@k and NDCG@k. For each user, Recall@k

(R@k) indicates the percentage of her rated items that appear in the top k recommended

items. NDCG@k (N@k) is the normalized discounted cumulative gain at k, which takes

the position of correctly recommended items into account.

7.4.3 Methods Studied

To demonstrate the effectiveness of our model, we compare to the following recommendation

methods.

Classical methods for implicit feedback :

• BPRMF, Bayesian Personalized Ranking-based Matrix Factorization [37], which is a

classic method for learning pairwise personalized rankings from user implicit feedback.

Classical neural-based recommendation methods :

• NCF, Neural Collaborative Filtering [9], which combines the matrix factorization (MF)

model with a multi-layer perceptron (MLP) to learn the user-item interaction function.

• DeepAE, the deep autoencoder [26], which utilizes a three-hidden-layer autoencoder

with a weighted loss function to capture the user implicit feedback.

State-of-the-art distance-based recommendation methods :

• CML, Collaborative Metric Learning [22], which learns a metric space to encode the

user-item interactions and to implicitly capture the user-user and item-item similarities.

• LRML, Latent Relational Metric Learning [66], which exploits an attention-based memory-

augmented neural architecture to model the relationships between users and items.
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• TransCF, Collaborative Translational Metric Learning [69], which employs the neigh-

borhood information of users and items to construct translation vectors capturing the

intensity and the heterogeneity of user–item relationships.

• SML, Symmetric Metric Learning with adaptive margin [71], which measures the tri-

lateral relationship from both the user-centric and item-centric perspectives and learns

adaptive margins for the target user and positive item.

The proposed method :

• PMLAM, the proposed model, which represents each user and item as Gaussian distri-

butions to capture the uncertainties in user preferences and item properties, and incor-

porates an adaptive margin generation mechanism to generate the margins based on the

sampled user-item triplets.

7.4.4 Experiment Settings

In the experiments, the latent dimension of all the models is set to 50 for a fair comparison.

All the models adopt the same negative sampling strategy as the proposed model, unless

otherwise specified. For BPRMF, the Adam [112] algorithm is used to update the model

parameters rather than conventional stochastic gradient descent; the learning rate is set to

0.001 and the regularization parameter is set to 0.001. With these parameters, the model

can achieve good results. For NCF, we follow the same model structure as in the original

paper [9]. The learning rate is set to 0.001 and the batch size is set to 1024. For DeepAE,

we adopt the same model structure employed in the author-provided code and set the batch

size to 512. The weight of the positive items is selected from {5, 10, 15, 20} by a grid search

and the weights of all other items are set to 1 as recommended in [20]. For CML, we use

the authors’ implementation to set the margin to m = 1 and the regularization parameter

to λc = 1. For LRML, the learning rate is set to 0.001, and the number of memories is

selected from {5, 10, 20, 25, 50, 100} by a grid search. For TransCF, we follow the settings

in the original paper to select λ, λnbr, λdist ∈ {0, 0.001, 0.01, 0.1} and set the margin to 1

and batch size to 1000, respectively. For SML, we follow the author’s code to set the user

and item margin bound l to 1.0, λ to 0.01 and γ to 10, respectively.

For our model, the learning rate and λ are set to 0.001 and 0.001, respectively. We

randomly sample 10 unobserved users or items as negative samples for each user and positive
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item on Electronics and CDs datasets, while this number is set to 2 for the other datasets to

speed up the training process. The batch size is set to 5000 on all datasets. The dimension

h is set to 50. The user and item embeddings are initialized by drawing each vector element

independently from a zero-mean Gaussian distribution with a standard deviation of 0.01.

Our experiments are conducted with PyTorch running on GPU machines (Nvidia Tesla

P100).

Table 7.2 The performance comparison of all methods in terms of Recall@10
and NDCG@10. The best performing method is boldfaced. The underlined
number is the second best performing method. ∗, ∗∗, ∗ ∗ ∗ indicate the sta-
tistical significance for p <= 0.05, p <= 0.01, and p <= 0.001, respectively,
compared to the best baseline method based on the paired t-test. Improv.
denotes the improvement of our model over the best baseline method.

BPRMF NCF DeepAE CML LRML TransCF SML PMLAM Improv.
Recall@10

Books 0.0553 0.0568 0.0817 0.0730 0.0565 0.0754 0.0581 0.0885** 8.32%
Electronics 0.0243 0.0277 0.0253 0.0395 0.0299 0.0353 0.0279 0.0469*** 18.73%

CDs 0.0730 0.0759 0.0736 0.0922 0.0822 0.0851 0.0793 0.1129*** 22.45%
Comics 0.1966 0.2092 0.2324 0.1934 0.1795 0.1967 0.1713 0.2417 4.00%
Gowalla 0.0888 0.0895 0.1113 0.0840 0.0935 0.0824 0.0894 0.1331*** 19.58%

NDCG@10
Books 0.0391 0.0404 0.0590 0.0519 0.0383 0.0542 0.0415 0.0671** 13.72%

Electronics 0.0111 0.0125 0.0134 0.0178 0.0117 0.0148 0.0105 0.0234*** 31.46%
CDs 0.0383 0.0402 0.0411 0.0502 0.0420 0.0461 0.0423 0.0619*** 23.30%

Comics 0.2247 0.2395 0.2595 0.2239 0.1922 0.2341 0.1834 0.2753* 6.08%
Gowalla 0.0806 0.0822 0.0944 0.0611 0.0670 0.0611 0.0823 0.0984* 4.23%

7.4.5 Implementation Details

To speed up the training process, we implement a two-phase sampling strategy. We sample

a number of candidates, e.g., 500, of negative samples for each user every 20 epochs to

form a candidate set. During the next 20 epochs, the negative samples of each user are

sampled from her candidate set. This strategy can be implemented using multiple processes

to further reduce the training time.

Since none of the processed datasets has inherent user-user/item-item information, we

treat the user-item interaction as a user-item matrix and compute the cosine similarity for

the user and item pairs, respectively [146]. We set a threshold, e.g., 0.2 on Amazon and

Gowalla datasets and 0.4 on the Comics dataset, to select the neighbors. These thresholds

are chosen to ensure a reasonable degree of connectivity in the constructed graphs.
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Figure 7.3 The performance comparison on all datasets.

7.4.6 Performance Comparison

The performance comparison is shown in Figure 7.3 and Table 7.2. Based on these results,

we have several observations.

Observations about our model:

First, the proposed model, PMLAM, achieves the best performance on all five datasets

with both evaluation metrics, which illustrates the superiority of our model.

Second, PMLAM outperforms SML. Although SML has an adaptive margin mechanism,

it is achieved by having a learnable scalar margin for each user and item and adding
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a regularization term to prevent the learned margins from being too small. It can be

challenging to identify an appropriate regularization weight via hyperparameter tuning.

By contrast, PMLAM formulates the adaptive margin generation as a bilevel optimization

task, avoiding the need for additional regularization. PMLAM employs a neural network

to generate the adaptive margin, so the number of parameters related to margin generation

does not increase with the number of users or items.

Third, PMLAM achieves better performance than TransCF. One major reason is that

TransCF only considers the items rated by a user and the users who rated an item as

the neighbors of the user and item, respectively, which neglects the user-user/item-item

relations. PMLAM models the user-user/item-item relations by two margin ranking losses

with adaptive margins.

Fourth, PMLAM makes better recommendations than CML and LRML. These methods

apply a fixed margin for all user-item triplets and do not measure or model the uncertainty

of learned user/item embeddings. PMLAM represents each user and item as a Gaussian

distribution, where the uncertainties of learned user preferences and item properties are

captured by the covariance matrices.

Fifth, PMLAM outperforms NCF and DeepAE. These are MLP-based recommendation

methods with the ability to capture non-linear user-item relationships, but they violate the

triangle inequality when modeling user-item interaction. As a result, they can struggle to

capture the fine-grained user preference for particular items [22].

Other observations:

First, all of the results reported for the Comics dataset are considerably better than

those for the other datasets. The other four datasets are sparser and data sparsity nega-

tively impacts recommendation performance.

Second, CML, LRML and TransCF perform better than SML on most of the datasets.

The adaptive margin regularization term in SML struggles to adequately counterbalance

SML’s tendency to reduce the loss by imposing small margins. Although it is reported

that SML outperforms CML, LRML and TransCF in [71], the experiments are conducted

on three relatively small-scale datasets with only several thousands of users and items.

We experiment with much larger datasets; identifying a successful regularization setting

appears to be more difficult as the number of users increases.

Third, TransCF outperforms LRML on most of the datasets. One possible reason is that

TransCF has a more effective translation embedding learning mechanism, which incorpo-
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rates the neighborhood information of users and items. TransCF also has a regularization

term to further pull positive items closer to the anchor user.

Fourth, CML achieves better performance than LRML on most of the datasets. CML

integrates the weighted approximate-rank pairwise (WARP) weighting scheme [148] in the

loss function to penalize lower-ranked positive items. The comparison between CML and

LRML in [66] removes this component of CML. The WARP scheme appears to play an

important role in improving CML’s performance.

Fifth, DeepAE outperforms NCF. The heuristic weighting function of DeepAE can

impose useful penalties to errors that occur during training when positive items are assigned

lower prediction scores.

Table 7.3 The ablation analysis on the CDs and Electronics datasets in
terms of Recall@10 (R@10) and NDCG@10 (N@10). cat denotes the concate-
nation operation and add denotes the addition operation.

Architecture
CDs Electronics

R@10 N@10 R@10 N@10

(1) FixU−I + Deter Emb 0.0721 0.0371 0.0241 0.0090
(2) FixU−I + Gauss Emb 0.0815 0.0434 0.0296 0.0110
(3) AdaU−I + Deter Emb 0.0777 0.0415 0.0338 0.0125
(4) AdaU−I-cat + Deter Emb 0.0408 0.0204 0.0139 0.0055
(5) AdaU−I-add + Deter Emb 0.0311 0.0158 0.0050 0.0018
(6) AdaU−I + Gauss Emb 0.0856 0.0454 0.0365 0.0155
(7) AdaU−I + FixU−U + FixI−I 0.0966 0.0526 0.0429 0.0189
(8) PMLAM 0.1129 0.0619 0.0469 0.0234

7.4.7 Ablation Analysis

To verify and assess the relative effectiveness of the proposed user-item interaction module,

the adaptive margin generation module, and the user-user/item-item relation module, we

conduct an ablation study. Table 7.3 reports the performance improvement achieved by

each module of the proposed model. Note that we compute the Euclidean distance between

deterministic embeddings. In (1), which serves as a baseline, we use the hinge loss with

a fixed margin (Eq. 7.4) on deterministic embeddings of users and items to capture the

user-item interaction (m is set to 1 which is commonly used in [22, 66, 69]). In (2), as an

alternative baseline, we apply the same hinge loss as in (1), but replace the deterministic
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embeddings with parameterized Gaussian distributions (Section 7.3.1). In (3), we use the

adaptive margin generation module (Section 7.3.2) to generate the margins for deterministic

embeddings. In (4), we concatenate the deterministic embeddings of (i, j, k) to generate

sijk instead of using Eq. 7.11. In (5), we sum the deterministic embeddings of (i, j, k) to

generate sijk instead of using Eq. 7.11. In (6), we combine (2) and (3) to generate the

adaptive margins for Gaussian embeddings. In (7), we augment (6) with user-user/item-

item modeling but with a fixed margin, where the margin is also set to 1. In (8), we add

the user-user/item-item modeling with adaptive margins (Section 7.3.3) to replace the fixed

margins in the configuration of (7).

From the results in Table 7.3, we have several observations. First, from (1) and (2),

we observe that by representing the user and item as Gaussian distributions and comput-

ing the distance between Gaussian distributions, the performance improves. This suggests

that measuring the uncertainties of learned embeddings is significant. Second, from (1)

and (3) along with (2) and (6), we observe that incorporating the adaptive margin gen-

eration module improves performance, irrespective of whether deterministic or Gaussian

embeddings are used. These results demonstrate the effectiveness of the proposed mar-

gin generation module. Third, from (3), (4) and (5), we observe that our designed inputs

(Eq. 7.11) for margin generation facilitate the production of appropriate margins compared

to commonly used embedding concatenation or summation operations. Fourth, from (2),

(3) and (6), we observe that (6) achieves better results than either (2) or (3), demon-

strating that Gaussian embeddings and adaptive margin generation are compatible and

can be combined to improve the model performance. Fifth, compared to (6), we observe

that the inclusion of the user-user and item-item terms in the objective function (7) leads

to a large improvement in recommendation performance. This demonstrates that explicit

user-user/item-item modeling is essential and can be an effective supplement to infer user

preferences. Sixth, from (7) and (8), we observe that adaptive margins also improve the

modeling of the user-user/item-item relations.

7.4.8 Case Study

In this section, we conduct case studies to confirm whether the adaptive margin generation

can produce appropriate margins. To achieve this purpose, we train our model on the

MovieLens-100K dataset. This dataset provides richer side information about movies (e.g.,
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movie genres), making it easier for us to illustrate the results. Since we only focus on the

adaptive margin generation, we use deterministic embeddings of users and items to avoid

the interference of other modules. We randomly sample users from the dataset. For each

user, we sample one item that the user has accessed as the positive item and two items the

user did not access as negative items, where one item has a similar genre with the positive

item and the other does not. The case study results are shown in Table 7.4.

As shown in Table 7.4, our adaptive margin generation module tends to generate a

smaller margin value when the negative movie has a similar genre with the positive movie,

while generating larger margins when they are distinct. These help put the user potentially

preferred items not too far from the user.

Table 7.4 A case study of the generated margin of sampled training triplets.
The movie genre label is from the dataset.

User Positive Sampled Movie Margin

405
Scream (Thriller)

Four Rooms (Thriller) 1.2752
Toy Story (Animation) 12.8004

French Kiss (Comedy)
Addicted to Love (Comedy) 2.6448
Batman (Action) 12.4607

66
Air Force One (Action)

GoldenEye (Action) 0.3216
Crumb (Documentary) 5.0010

The Godfather (Crime)
The Godfather II (Crime) 0.0067
Terminator (Sci-Fi) 3.6335

7.5 Summary

In this chapter, we propose a distance-based recommendation model for the top-K recom-

mendation. Each user and item in our model are represented by Gaussian distributions

with learnable parameters to handle the uncertainties. By incorporating an adaptive mar-

gin scheme, our model can generate fine-grained margins for the training triples during

the training procedure. To explicitly capture the user-user/item-item relations, we adopt

two margin ranking losses with adaptive margins to force similar user and item pairs to

map closer together in the latent space. Experimental results on five real-world datasets

validate the performance of our model, demonstrating improved performance compared to

many state-of-the-art methods and highlighting the effectiveness of the Gaussian embed-

dings and the adaptive margin generation scheme.
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Chapter 8

Conclusion and Future Work

This chapter concludes the thesis. Section 8.1 summarizes contributions of our work and

Section 8.2 outlines existing challenges and several directions for future work.

8.1 Conclusion

Due to the information/choice overload, recommender systems are playing more and more

important roles in modern society. These systems help users not only easily find the items

that they are interested in but also increase the revenue of the recommendation service

provider. However, the personalized recommender system is still facing several challenges:

the difficulty of modeling complex user-item interactions, the hardship of incorporating side

information, the intricacy of capturing the user behavior dynamics, and the hardness of

conducting adaptive learning. To tackle these challenges, dedicated models are proposed

in this thesis.

To model the complex interactions between users and point-of-interests (POIs), we pro-

pose a novel autoencoder-based model to learn the nonlinear user-POI relations, namely

SAE-NAD, which consists of a self-attentive encoder (SAE) and a neighbor-aware decoder

(NAD). In particular, the self-attentive encoder adaptively differentiates the user prefer-

ence degrees in multiple aspects, by adopting a multidimensional attention mechanism. To

incorporate the geographical context information, a neighbor-aware decoder is proposed

to make users’ reachability higher on the nearby neighbors of checked-in POIs, which is

achieved by the inner product of POI embeddings together with the radial basis function

(RBF) kernel. Our model outperforms five state-of-the-art methods on the POI recom-
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mendation task. We also demonstrate that incorporating the geographical influence can

improve the recommendation performance by 10-20%.

To effectively incorporate the content auxiliary information, we propose a gated autoen-

coder with the word- and neighbor-attention. The model learns items’ hidden representa-

tions from ratings and contents in a gated manner. Moreover, the model also captures items’

informative words and representative neighbors by word- and neighbor-attention modules,

respectively. The experimental results not only demonstrate the performance of our model

over other state-of-the-art methods but also provide interpretable results attributed to the

attention modules. Furthermore, the proposed attention mechanism yields fewer learnable

parameters compared with classical convolutional or recurrent neural networks for learning

the content embedding.

To model the temporal dynamics, we propose a hierarchical gating network with an

item-item product module for the sequential recommendation. The model adopts a feature

gating module and an instance gating module to control what item features can be passed to

downstream layers, where informative latent features and important items can be identified.

Moreover, we apply an item-item product module to capture the relations between closely

relevant items. Experimental results on five real-world datasets validate the performance

of our model over many state-of-the-art methods and demonstrate the effectiveness of

the gating and item-item product modules. Further, our proposed model achieves faster

training speed with fewer parameters compared with other state-of-the-art methods.

To conduct the adaptive/personalized hyper-parameter learning, we develop a distance-

based recommendation model with two novel aspects: (1) each user and item are param-

eterized by Gaussian distributions to capture the learning uncertainties; (2) an adaptive

margin generation scheme is proposed to generate the margins regarding different training

triplets. In the adaptive margin generation module, we model the learning of adaptive

margins as a bilevel (inner and outer) optimization problem, where we build a proxy func-

tion to explicitly link the learning of margin related parameters with the outer objective

function. Via a comparison using five real-world datasets with state-of-the-art methods,

the proposed model outperforms the best existing models by 4-22% in terms of recall@K

on the top-K recommendation.
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8.2 Future Work

My future research will continue the line of important topics discussed above and explore

new directions to tackle practical problems of recommender systems. As recommender

systems involved in a large number of applications and services, there is a wide range of

improvement for various research topics:

FATE Problem in Recommender Systems. FATE is an abbreviation of Fairness,

Accountability, Transparency and Ethics. Recommender systems are shown to be highly

biased and lack accountability or transparency. Thus, solely focusing on the satisfaction

and personalization of customers may affect the business. That is, only considering the

benefits of customers may hurt the benefits of other participants. For example, the user

feedback in recommender systems is usually long-tailed and highly imbalanced that a few

popular items have larger occurrences than others. Training on the imbalanced data may

make popular items have high exposures as the recommendation candidates, which will

reduce the exposure proportion of other items, resulting in unfairness. To tackle this, our

research seeks to build effective recommendation models to answer three questions: (1)

How can recommendation models assist users and offer enhanced insights, while avoiding

exposing them to discrimination in health, housing, law enforcement, and employment?

(2) How can the model balance the need for efficiency and exploration with fairness and

sensitivity to users? (3) How can the model be trusted by individuals and communities?

Recommendation with Multiple Stakeholders. Traditional recommender systems

only focus on optimizing the utility of the end-users who are the receiver of the recommenda-

tions. By contrast, the multi-stakeholder recommendation attempts to generate recommen-

dations that satisfy the needs of the end-users and other parties or stakeholders. However,

there has not been a comprehensive treatment of the integration of multiple stakeholders

into recommendation calculations. To simultaneously take the utilities of all stakeholders

into consideration, I plan to explore the potential idea of connecting the Pareto-efficient

condition with the multiple-objective optimization. This is promising that the model can

generate the Pareto Frontier for each end-user. Then one specific recommendation that is

satisfied by all stakeholders can be selected.

Transferable Recommender Systems. The single-domain recommender system

only focuses on one domain and ignores the user interests in other domains, which greatly

exacerbates the sparsity and cold start problems. A tangible solution for these problems
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is to apply domain adaptation techniques, where a model is assisted with the knowledge

learned from other domains. In this research project, I plan to explore the use of transfer

learning in the recommendation scenario, which can improve learning tasks in one domain

by using knowledge transferred from others. The combination of different domains into a

single model helps improve the recommendation quality by having a more compact and

semantically richer user latent representation.

Online Recommender Simulator. Current recommendation research is typically

evaluated in a one-time fashion, where the data is statically split without varying with

time. This offline evaluation strategy largely mismatches the real-world online recommen-

dation scenario. One main reason for not conducting the online evaluation is the lack of

such an online evaluation environment. To tackle this challenge, I plan to build a sim-

ulator with reinforcement learning techniques that are trained from the real-world data,

where each customer is represented as an agent and has its decision-making policy from

the recommendation model. When a customer enters a query, the simulator returns a

list of items according to the query based on the recommendation model. Moreover, the

simulator can incrementally update the recommendation model accordingly. As such, the

recommendation model can be evaluated in an online fashion.

Natural Language Understanding for Recommendation. Except for giving rat-

ings to items or products, nowadays, users are also supposed to write down their reviews

regarding the items they have rated or purchased. These user reviews provide a significant

supplement for understanding user preference. With the rapid growth of Natural Language

Processing (NLP), the techniques to understand the human language have been largely de-

veloped. One representative example is Transformer [56] which has been successfully used

in many NLP tasks, such as BERT [149]. One interesting future work can how we can better

make use of these pre-trained language models to better understand the user preference.
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