

Point-of-Interest Recommendation: Exploiting Self-Attentive Autoencoders with Neighbor-Aware Influence

Chen Ma, Yingxue Zhang, Qinglong Wang and Xue Liu

McGill University, Montreal, Canada

CIKM 2018, Turin, Italy

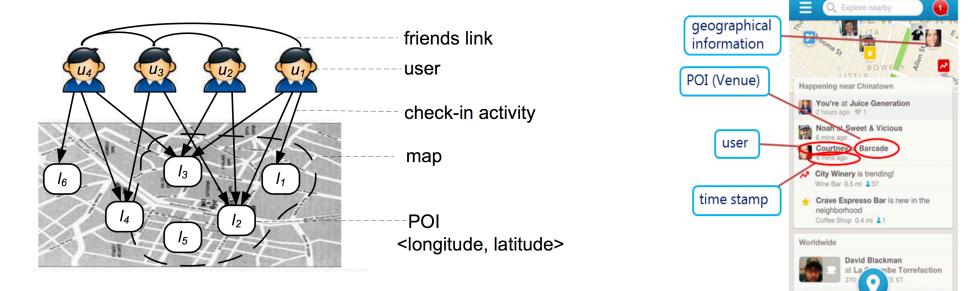
Background

Many **location-based social networks** (LBSNs) have emerged in recent years, such as Yelp, Foursquare, Facebook Place.

- Yelp had a monthly average of **32 million** unique visitors Via the App
- More than **50 million** people use Foursquare every month

Background

In LBSNs, users can check-in and share their experience when they visit a location, namely, **Point-of-Interest** (POI)



Ye et al., Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation, SIGIR 2011 Bao et al., Recommendations in Location-based Social Networks: A Survey, Geoinformatica 2015

Coffee with Em

Background

The large amount of user-POI interactions facilitates a promising service – **personalized POI recommendation**

- Help users easily find the places they are **interested** in
- Improve the customer **satisfaction**
- Attract **potential visitors** for POI owners
- Increase **revenue** for POI owners and service providers

•

Challenges

Data Sparsity: the check-in data is extremely sparse

Dataset	Movielens10M	Netflix Prize	Check-in Data
Density	1.3%	1.2%	~0.1%

Implicit Feedback Property: check-ins are implicit feedback

Explicit Feedback: movie rating data	Implicit Feedback: check-in data		
Users explicitly denote "like" or "dislike" with different scores	Only check-in frequency is available		

Context Information: how to incorporate different context information?

- Geographical coordinates of POIs (key distinction: geographical influence)
- Timestamps of check-ins
- Text description of POIs

Related Work

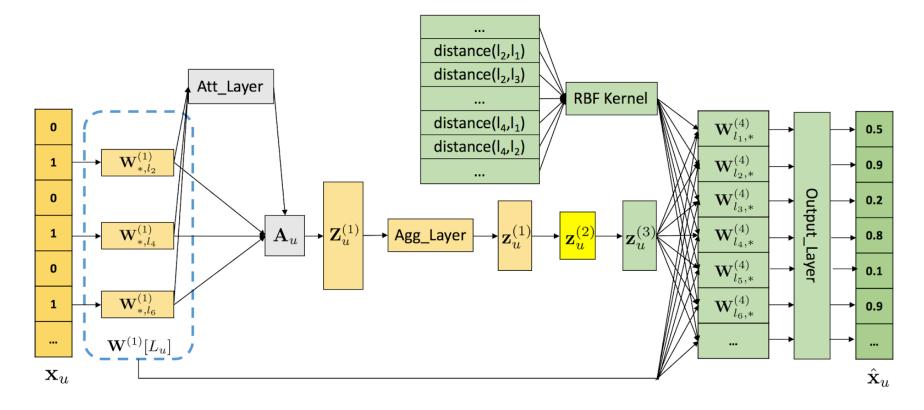
Methods	Major algorithm
USG (Ye et al, SIGIR'2011)	Memory-based CF
MGMMF (Cheng et al, AAAI' 2012)	Poisson MF
GeoMF (Lian et al, SIGKDD' 2014)	Weighted MF
IRENMF (Liu et al, CIKM' 2014)	Weighted MF
RankGeoFM (Li et al, SIGIR' 2015)	BPR MF
ARMF (Li et al, SIGKDD' 2016)	Weighted MF

- Combine latent factors linearly
- Not distinguish user preference levels on visited POIs
- Not explicitly model the POI-POI relations

CF: Collaborative Filtering MF: Matrix Factorization BPR: Bayesian Personalized Ranking

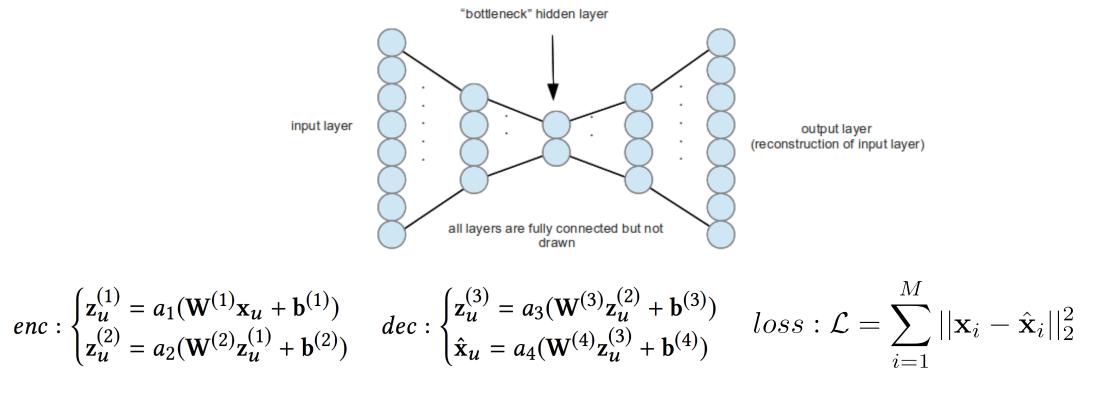
Model Overview

An autoencoder-based model, consisting of a self-attentive encoder (SAE) and a neighbor-aware decoder (NAD)



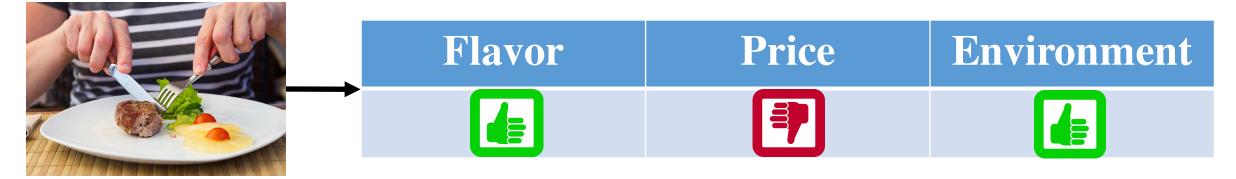
Preliminary

Autoencoder: an unsupervised neural network with an encoder and a decoder

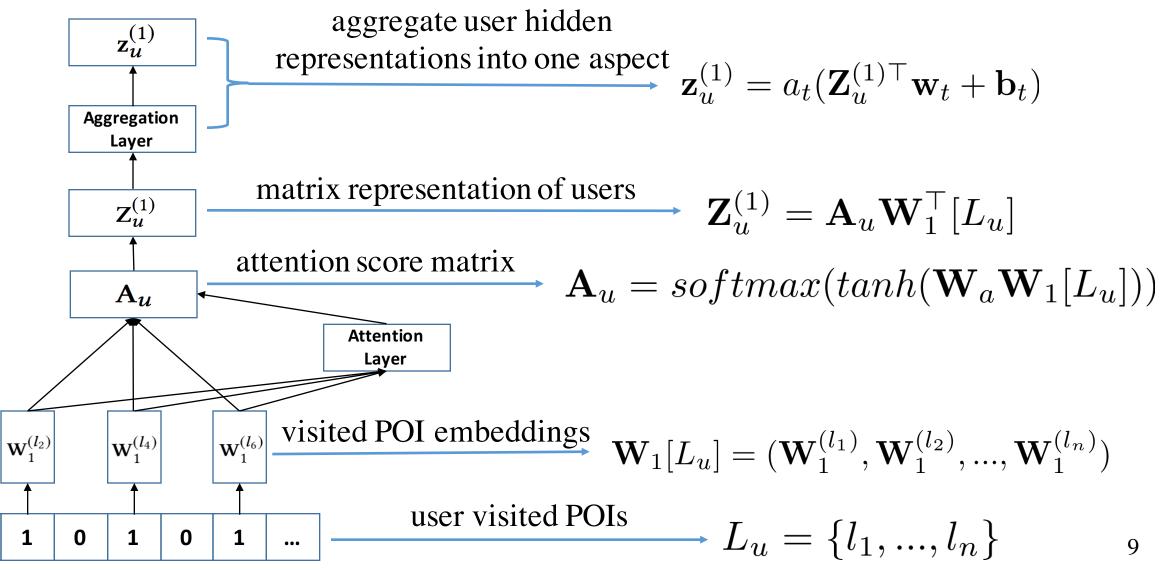


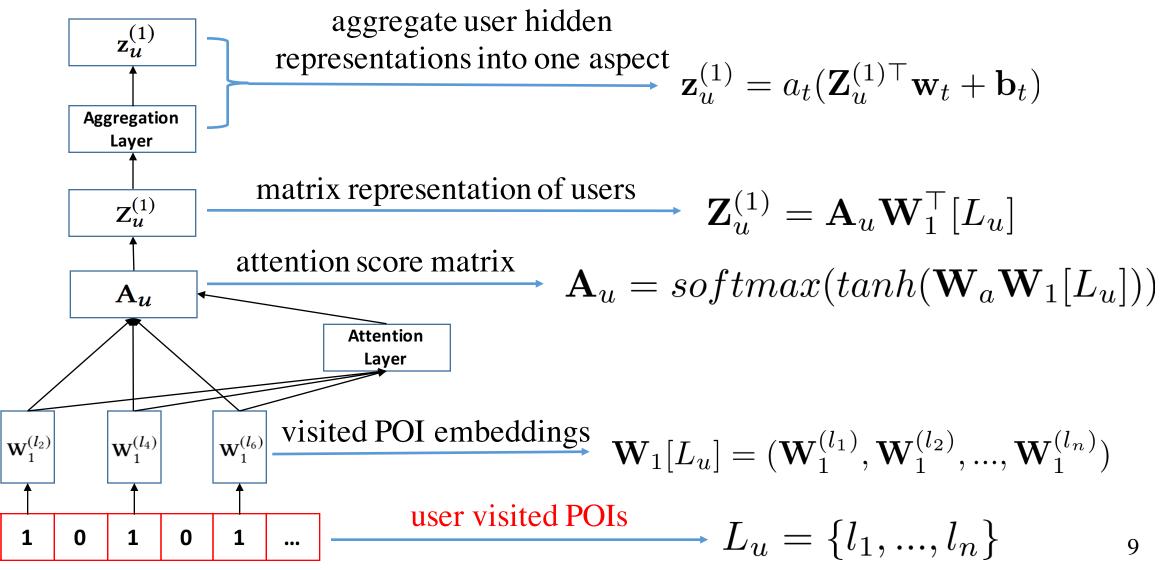
http://nghiaho.com/?p=1765

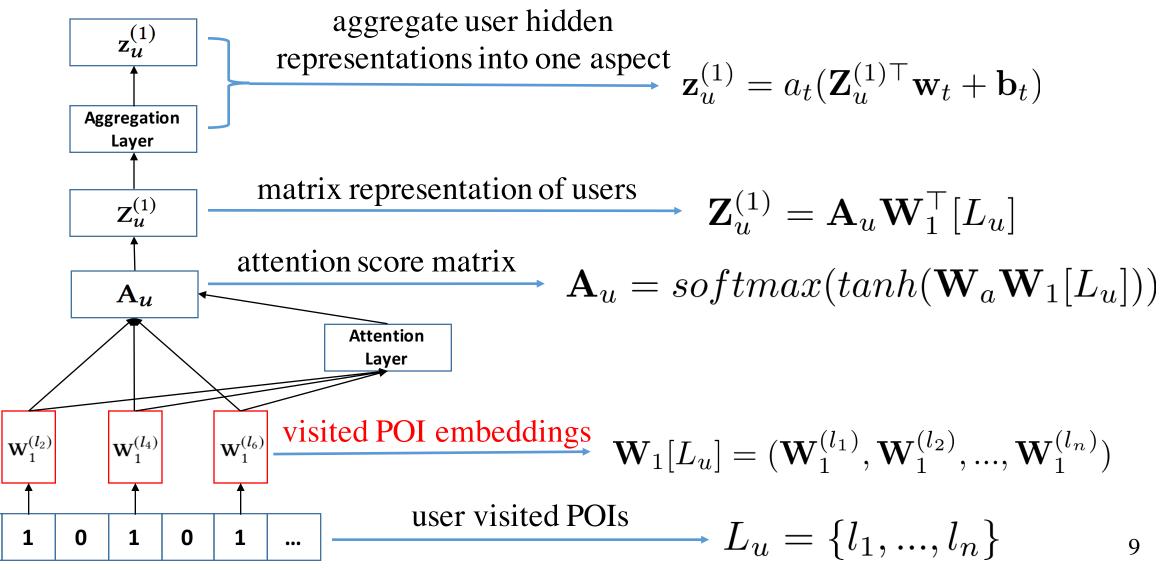
- Previous works do not further discriminate user preference levels on visited POIs
- User preference is a complex sentiment

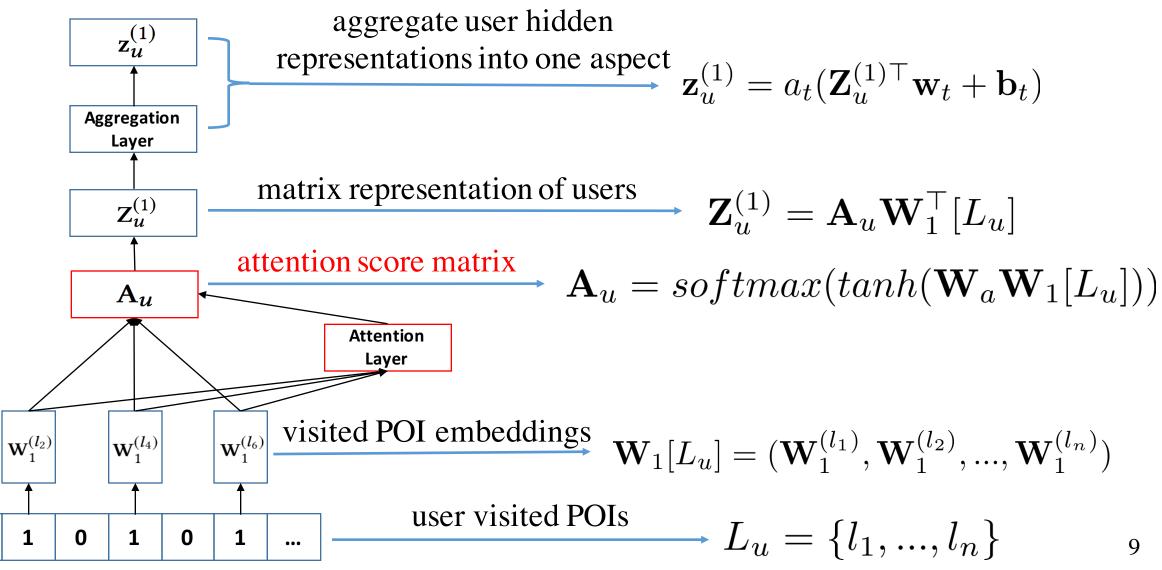


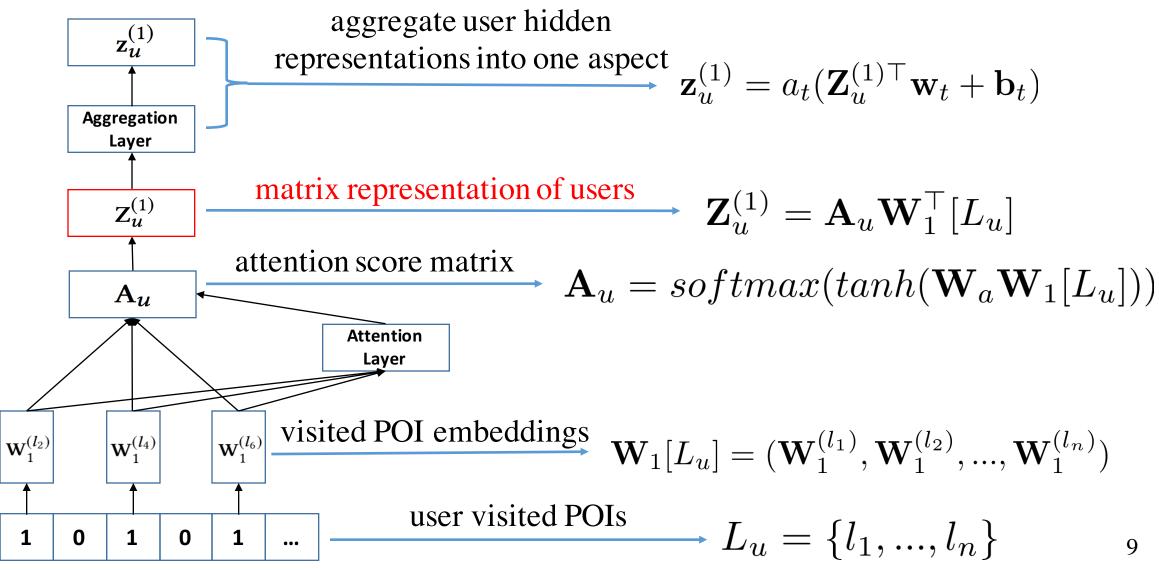
Some visited POIs are more representative than others and should contribute more to characterize users' preferences

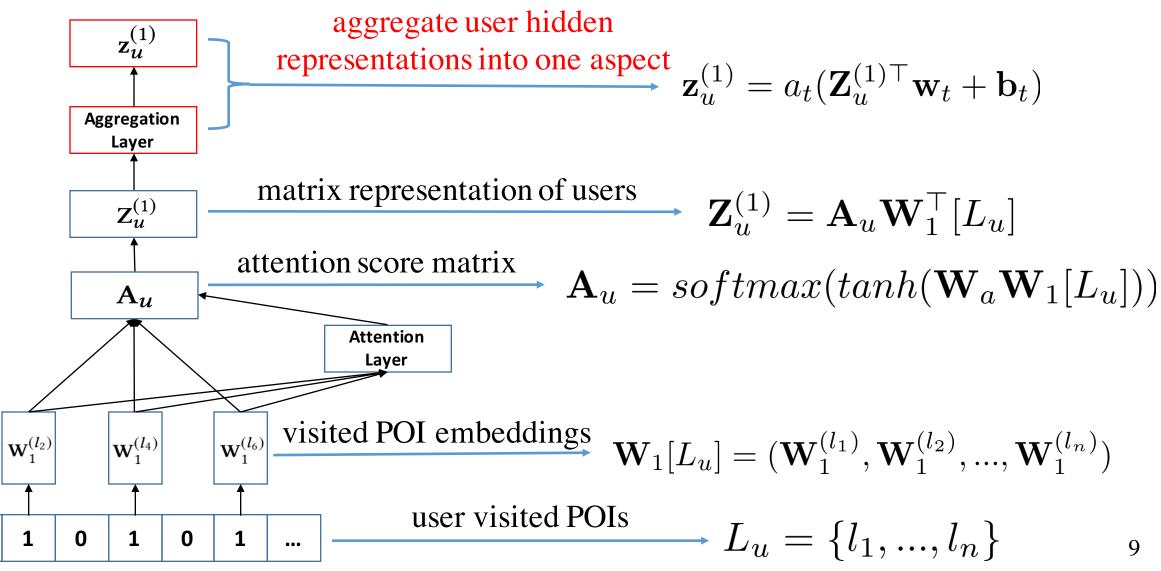






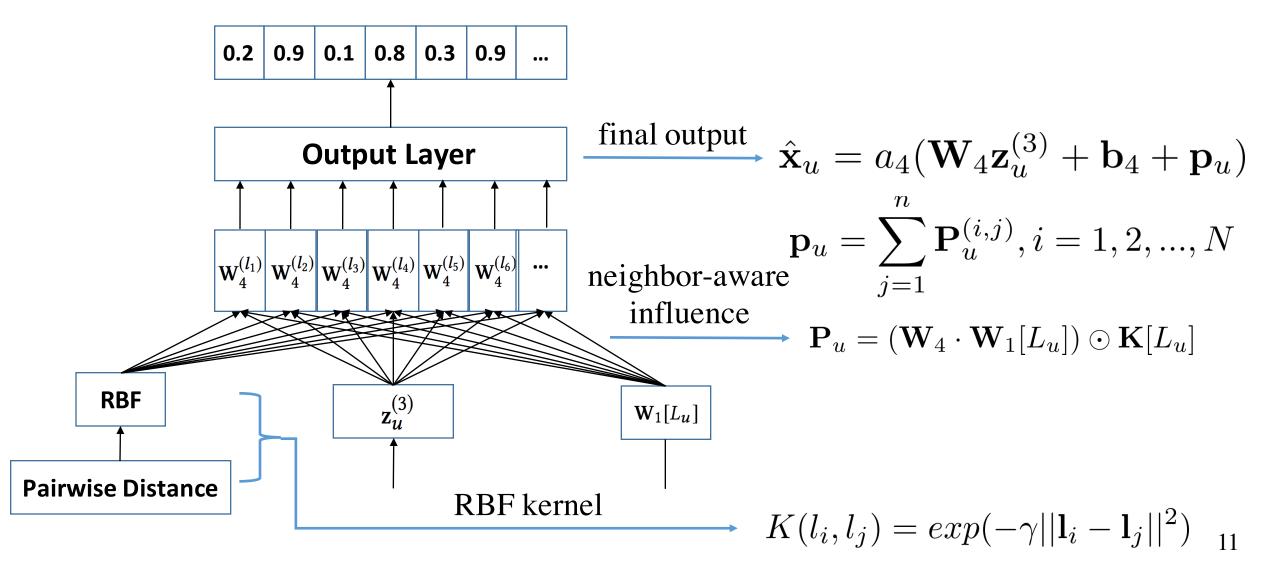


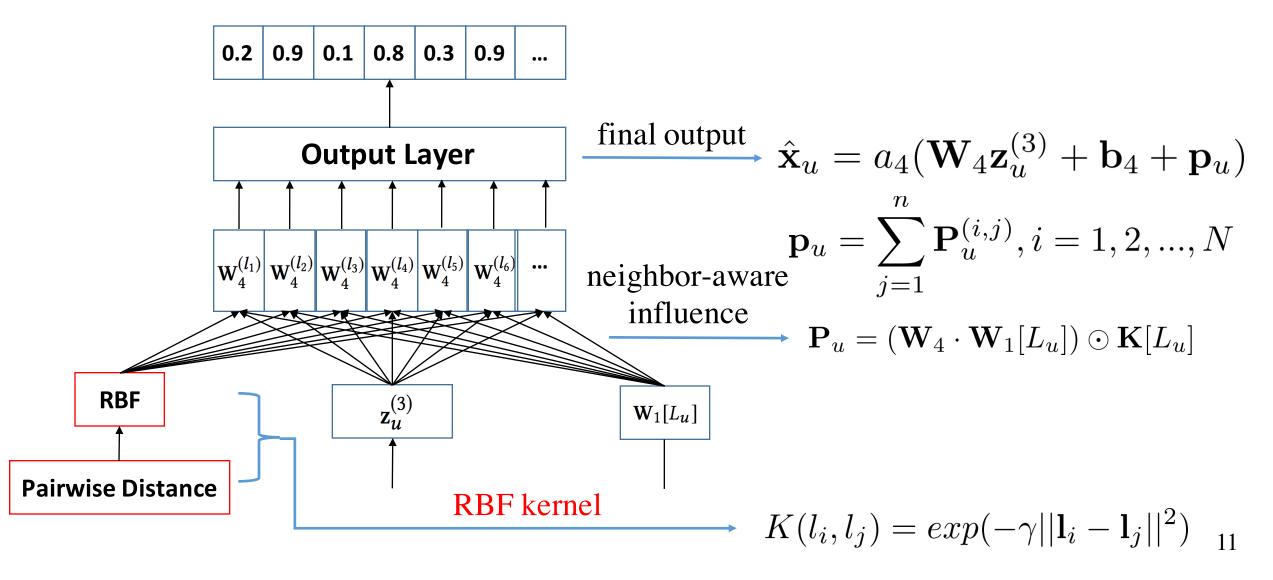


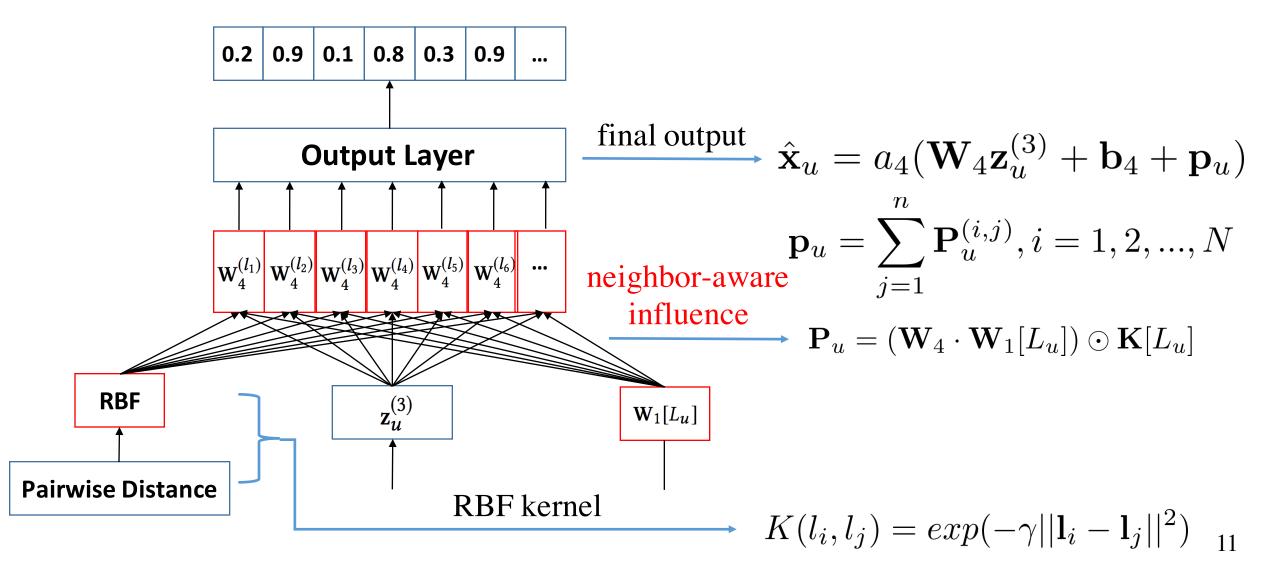


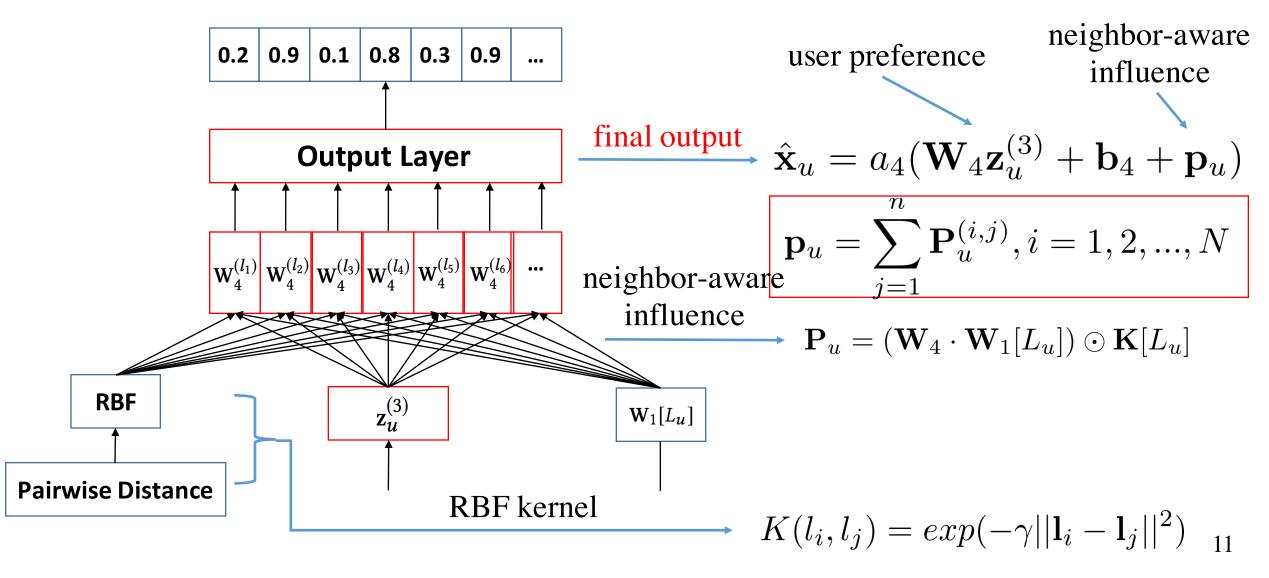
- Explicitly capture the POI-POI relations, e.g., properties, similarity
- Incorporate the geographical influence by the RBF kernel
- Similar to *FISM* (*SIGKDD' 2013*) that applies the inner product to capture the similarity between POIs
- Similar to *word2vec*: given a set of POIs, how likely other POIs will be visited

Model the pairwise relations: the unvisited POIs that close to visited POIs are more likely to be checked-in









Loss Function

The **weighted loss for implicit feedback**: the check-in frequency should reflect the user preference levels on POIs

$$\mathcal{L}_{WAE} = \sum_{u=1}^{M} \sum_{i=1}^{N} ||c_{u,i}(x_{u,i} - \hat{x}_{u,i})||_{2}^{2} = ||\mathbf{C} \odot (\mathbf{X} - \hat{\mathbf{X}})||_{F}^{2}$$
$$c_{u,i} = \begin{cases} \varphi(r_{u,i}) + 1 & \text{if } r_{u,i} > 0\\ 1 & \text{otherwise} \end{cases}$$

Evaluation

• Three datasets

Dataset	#Users	#POIs	#Check-ins	Density
Gowalla	$43,\!074$	46,234	1,720,082	0.0391%
Foursquare	$24,\!941$	$28,\!593$	$939,\!317$	0.0791%
Yelp	$30,\!887$	18,995	$675,\!887$	0.1099%

For each user, **20%** of her visiting locations are selected as testing.

• Evaluation Metrics

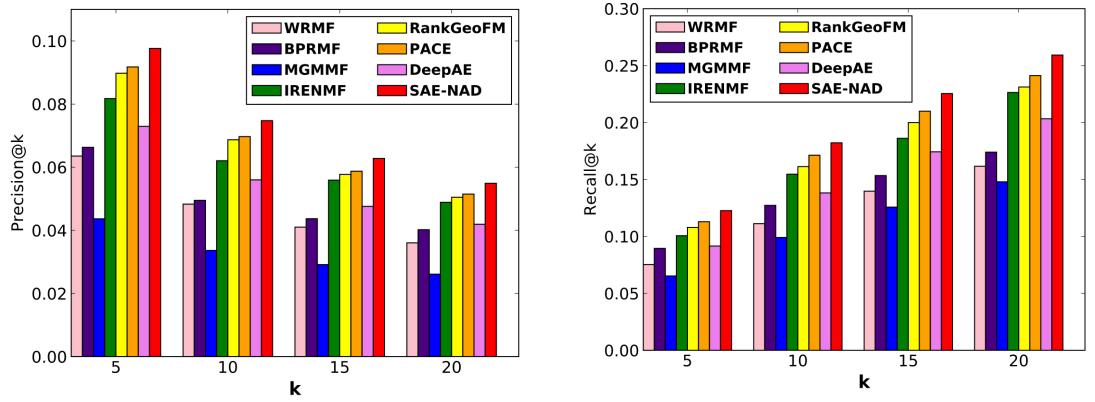
- Precision@5, 10, 15, 20
- Recall@5,10,15,20
- Mean Average Precision (MAP) @5, 10, 15, 20

Evaluation Baselines WRMF: weighted regularized matrix factorization, ICDM' 2008 **Classical CF methods** BPRMF: bayesian personalized ranking, UAI' 2009 MGMMF: multi-center Gaussian model fused with MF, AAAI' 2012 **POI recommendation** IRENMF: instance-region neighborhood MF, CIKM' 2014 methods RankGeoFM: ranking-based geographical factorization, SIGIR' 2015 PACE: preference and context embedding, SIGKDD' 2017 **Deep learning based methods** DeepAE: three-hidden-layer autoencoder with a weighted loss

Liu et al., An Experimental Evaluation of Point-of-interest Recommendation in Location-based Social Networks, PVLDB 2017

Evaluation Results

• On Gowalla dataset



1. The proposed method outperforms all other baseline methods on three datasets

- 2. By incorporating SAE and NAD, the proposed method largely increases the performance of DeepAE
- 3. Implicit feedback and geographical influence are important to model in POI recommendation

Evaluation Results

• Ablation study

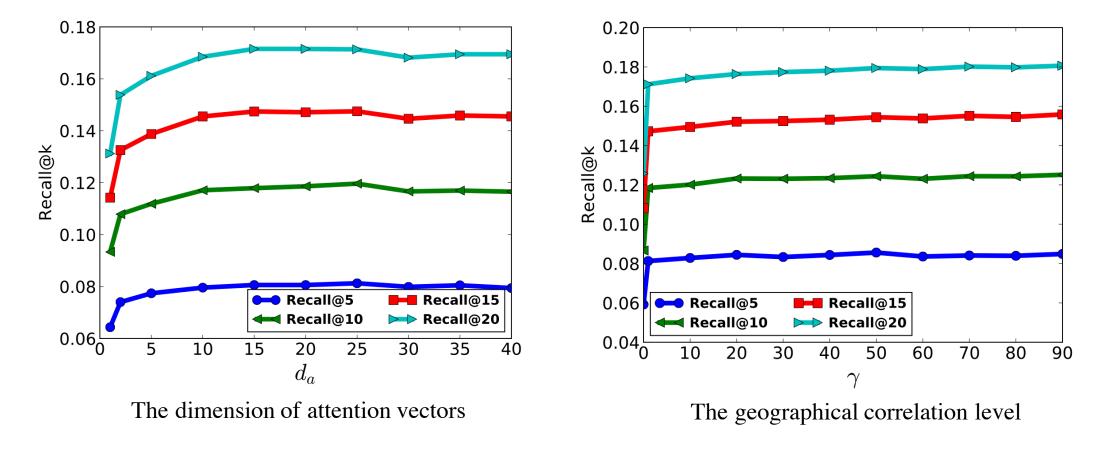
Gowalla	P@10	R@10	MAP@10]
WAE	0.05599	0.13819	0.06728	
SAE-WAE	0.06039	0.14808	0.07257	
NAD-WAE	0.07029	0.17915	0.08699	
Foursquare	P@10	R@10	MAP@10	
WAE	0.05961	0.11134	0.05632	ĺ
SAE-WAE	0.06346	0.11813	0.06054	
NAD-WAE	0.06598	0.12546	0.06333	
Yelp	P@10	R@10	MAP@10	
WAE	0.03764	0.07386	0.03198	
SAE-WAE	0.03951	0.07586	0.03307	
NAD-WAE	0.04115	0.08016	0.03402	
NAD-WAE Yelp WAE SAE-WAE	0.06598 P@10 0.03764 0.03951	0.12546 R@10 0.07386 0.07586	0.06333 MAP@10 0.03198 0.03307	

WAE: deep autoencoders with the weighted loss SAE-WAE: the self-attentive encoder + WAE NAD-WAE: the neighbor-aware decoder + WAE

- SAE and NAD all improve the performance of WAE
- Our NAD plays a more important role for performance improvement

Evaluation Results

• Hyper-parameters on the Foursquare dataset



Conclusion

We propose an **encoder-decoder** based method, which consists of a **self-attentive encoder** and a **neighbor-aware decoder**, to model the complex interactions between users and POIs.

Experimental results show that the proposed method outperforms the state-of-the-art methods significantly for POI recommendation.

Thank you!

Q & A

Email: chen.ma2@mail.mcgill.ca Code: https://github.com/allenjack/SAE-NAD LibRec: https://www.librec.net/ Special Interest Group on Information Retrieval SIGIR Student Travel Grants