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Background

The rapid growth of Internet services allows users to access
millions of online products, such as movies, articles.

The large amount of user-item data facilitates a promising and 
practical service – the personalized recommendation. 
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Related Work
Models Algorithms

CTR (Wang et al., SIGKDD’ 2011) MF + LDA

SVDFeature (Chen et al., JMLR’ 2012) Feature-based MF

HFT (Julian et al., RecSys’2013) LFM + LDA

CDL (Wang et al., SIGKDD’2015) MF + SDAE

ConvMF (Kim et al., RecSys’ 2016) MF + CNN

CVAE (Li et al., SIGKDD’2017) MF + VAE

MF: Matrix Factorization
LDA: Latent Dirichlet Allocation
LFM: Latent Factor Model
SDAE: Stacked Denoising AutoEncoder
VAE: Variational AutoEncoder

• Equally treat item content

• Combine the rating and content
information by regularization

• Not explicitly utilize the item-
item relations
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Model Overview

Word-attention

Gating layer

Neighbor-attention
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An autoencoder-based model:



Model Overview

Word-attention

Gating layer

Neighbor-attention

4

An autoencoder-based model:



Autoencoder
•Autoencoder is used to learn the item hidden representations 

from rating information.

http://nghiaho.com/?p=1765
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binary item rating vector



Word-attention Module

5



Word-attention Module
• Previous works do not discriminate the word importance for

describing a certain item
• Some informative words are more representative than others and

should contribute more to characterize a certain item

•We utilize an attention model to learn the item representation 
from content information.
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E.G.

Lin et al., A Structured Self-attentive Sentence Embedding, ICLR 2017 



Word-attention Module
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word embedding look-up

attention score matrix

matrix representation of items

aggregate item representations 
into one aspect



Gating Layer
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Gating Layer
•Adaptively fuse the hidden representations from two

heterogeneous data sources
•Avoid tedious hyper-parameter tuning by the regularization term

6

Gating	  Layer

adaptively learn the gate

combine hidden representations

item hidden representations 
from ratings

item hidden representations 
from content

the gated item representation



Neighbor-attention Module
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Neighbor-attention Module
• Previous works do not consider the relations between items
• Related items may share the same topic or have similar attributes:

citations between articles, movies in the same genre
• Exploring users’ preferences on an item’s neighbors also

benefits inferring users’ preferences on this item
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Neighbor-attention Module
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Neighbor_Att

One-‐hop	  neighbors
…

the attention score of item i’s neighbors

the neighborhood representation item i

use a bilinear function to capture the relation

the item neighborhood 
representation



Prediction and Loss
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•Modified decoder: explore users’ preferences on both an item and
its neighborhood

•Weighted loss



Evaluation
• Four datasets

• Evaluation Metrics
• Recall@5, 10, 15, 20
• NDCG @5, 10, 15, 20

For each user, 20% of 
her viewed items are
selected as testing.
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Evaluation Baselines
WRMF: weighted regularized matrix factorization, ICDM’ 2008

CDAE: collaborative denoising autoencoder, WSDM’ 2016

CDL: collaborative deep learning, SIGKDD’ 2015

CVAE: collaborative variational autoencoder, SIGKDD’ 2015

CML+F: collaborative metric learning, WWW’ 2017

ConvMF: convolutional matrix factorization, RecSys’ 2016

JRL: joint representation learning, CIKM’ 2017

Classical CF methods

Learning from bag-of-
words

Learning from word sequence
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Evaluation Results

Our GATE outperforms other methods significantly on most of the datasets
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*: p <= 0.05, ** p < 0.01, ***: p < 0.001



Evaluation Results
•Ablation study

From (2), (3): our gating is better than regularization
From (3), (4), (5): our word-attention achieves similar performance with fewer parameters
From (3), (6): the item-item relations play an important role 12



Evaluation Results
• Case Study
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Conclusion
We propose an autoencoder-based model, which consists of a 
word-attention module, a neighbor-attention module, and a
gating layer to address the content-aware recommendation task.

Experimental results show that the proposed method outperforms 
the state-of-the-art methods significantly for content-aware
recommendation.
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Thank you!

Q & A

Email: chen.ma2@mail.mcgill.ca
Code: https://github.com/allenjack/GATE
LibRec: https://www.librec.net/

Google ‘LibRec’


