

Gated Attentive-Autoencoder for Content-Aware Recommendation

Chen Ma¹, Peng Kang¹, Bin Wu², Qinglong Wang¹ and Xue Liu¹

¹McGill University, Montreal, Canada ²Zhengzhou University, Zhengzhou, China

WSDM2019, Melbourne, Australia

The rapid growth of Internet services allows users to access millions of online products, such as movies, articles.

The large amount of user-item data facilitates a promising and practical service – the **personalized recommendation**.

The rapid growth of Internet services allows users to access millions of online products, such as movies, articles.

The rapid growth of Internet services allows users to access millions of online products, such as movies, articles.

The rapid growth of Internet services allows users to access millions of online products, such as movies, articles.

The rapid growth of Internet services allows users to access millions of online products, such as movies, articles.

Related Work

Models	Algorithms
CTR (Wang et al., SIGKDD' 2011)	MF + LDA
SVDFeature (Chen et al., JMLR' 2012)	Feature-based MF
HFT (Julian et al., RecSys' 2013)	LFM + LDA
CDL (Wang et al., SIGKDD' 2015)	MF + SDAE
ConvMF (Kim et al., RecSys' 2016)	MF + CNN
CVAE (Li et al., SIGKDD' 2017)	MF + VAE

MF: Matrix Factorization LDA: Latent Dirichlet Allocation LFM: Latent Factor Model SDAE: Stacked Denoising AutoEncoder VAE: Variational AutoEncoder

- Equally treat item content
- Combine the rating and content information by regularization
- Not explicitly utilize the itemitem relations

Model Overview

An **autoencoder**-based model:

Model Overview

An **autoencoder**-based model:

Autoencoder

• Autoencoder is used to learn the item hidden representations from rating information.

http://nghiaho.com/?p=1765

Word-attention Module

Word-attention Module

- Previous works do not discriminate the word importance for describing a certain item
- Some informative words are more representative than others and should contribute more to characterize a certain item
 - E.G. great food and good service what else can you ask for
- We utilize an attention model to learn the item representation from content information.

Word-attention Module

Gating Layer

Gating Layer

- Adaptively fuse the hidden representations from two heterogeneous data sources
- Avoid tedious hyper-parameter tuning by the regularization term

Neighbor-attention Module

Neighbor-attention Module

- Previous works do not consider the relations between items
- Related items may share the same topic or have similar attributes: citations between articles, movies in the same genre
- Exploring users' preferences on an item's neighbors also benefits inferring users' preferences on this item

Neighbor-attention Module

 $s_{i,j} = tanh(\mathbf{z}_i^{g^{\top}} \mathbf{W}_n \mathbf{z}_j^g), \forall j \in \mathcal{N}_i \longrightarrow$ use a bilinear function to capture the relation

 $\mathbf{a}_i = softmax(\mathbf{s}_i)$ —— the attention score of item *i*'s neighbors

$$\mathbf{z}_i^n = \sum_{j \in \mathcal{N}_i} a_{i,j} \mathbf{z}_j^g \longrightarrow$$
 the neighborhood representation item *i*

Prediction and Loss

• Modified decoder: explore users' preferences on both an item and its neighborhood

$$z_{i}^{(3,g)} = a_{3}(W_{3}z_{i}^{g} + b_{3}),$$

$$z_{i}^{(3,n)} = a_{3}(W_{3}z_{i}^{n} + b_{3}),$$

$$\hat{\mathbf{r}}_{i} = a_{4}(W_{4}z_{i}^{(3,g)} + W_{4}z_{i}^{(3,n)} + b_{4})$$

• Weighted loss

$$\mathcal{L}_{AE} = \sum_{i=1}^{n} \sum_{u=1}^{m} ||C_{u,i}(R_{u,i} - \hat{R}_{u,i})||_{2}^{2} = ||\mathbf{C}^{\top} \odot (\mathbf{R}^{\top} - \hat{\mathbf{R}}^{\top})||_{F}^{2} \quad C_{u,i} = \begin{cases} \rho & \text{if } R_{u,i} = 1\\ 1 & \text{otherwise} \end{cases}$$

Evaluation

• Four datasets

Dataset	#Users	#Items	#Ratings	#Words	Density
citeulike-a	5,551	16,980	204,986	8,000	0.217%
ML20M	138,493	18,307	19,977,049	12,397	0.788%
Books	65,476	41,264	1,947,765	27,584	0.072%
CDs	24,934	24,634	478,048	24,341	0.078%

For each user, **20%** of her viewed items are selected as testing.

• Evaluation Metrics

- Recall@5,10,15,20
- NDCG @5, 10, 15, 20

Evaluation Baselines

WRMF: weighted regularized matrix factorization, ICDM' 2008 **Classical CF methods** CDAE: collaborative denoising autoencoder, WSDM' 2016 CDL: collaborative deep learning, SIGKDD' 2015 Learning from bag-of-CVAE: collaborative variational autoencoder, SIGKDD' 2015 words CML+F: collaborative metric learning, WWW'2017 ConvMF: convolutional matrix factorization, RecSys'2016 Learning from word sequence JRL: joint representation learning, CIKM' 2017

Evaluation Results

	WRMF	CDAE	CDL	CVAE	CML+F	ConvMF	JRL	GATE	Improv.		
Recall@10											
citeulike-a	0.0946	0.0888	0.1317	0.1371	0.1283	0.1153	0.1325	0.1419	3.50%		
movielens-20M	0.1075	0.0751	0.1287	0.1303	0.1123	0.1201	0.1401	0.1625**	15.99%		
Amazon-Books	0.0553	0.0132	0.0648	0.0632	0.0756	0.0524	<u>0.0924</u>	0.1133*	22.62%		
Amazon-CDs	0.0779	0.0191	<u>0.0827</u>	0.0811	0.0824	0.0753	0.0816	0.1057***	27.81%		
	NDCG@10										
citeulike-a	0.0843	0.0736	0.0949	0.0952	0.1035	0.0914	0.0982	0.1082	4.54%		
movielens-20M	0.1806	0.1774	0.1836	0.1939	<u>0.2479</u>	0.1807	0.2439	0.2992**	20.69%		
Amazon-Books	0.0377	0.0105	0.0393	0.0384	0.0456	0.0324	<u>0.0592</u>	0.0708***	19.59%		
Amazon-CDs	0.0357	0.0105	0.0356	0.0349	0.0364	0.0323	<u>0.0386</u>	0.0477***	23.58%		

*: $p \le 0.05$, ** $p \le 0.01$, ***: $p \le 0.001$

Our GATE outperforms other methods significantly on most of the datasets

Evaluation Results

• Ablation study

Architecture	C	Ds	Books			
	R@10	N@10	R@10	N@10		
(1) stacked AE	0.0672	0.0315	0.0745	0.0484		
(2) reg: AE + W_Att	0.0676	0.0318	0.0304	0.0265		
(3) gating: AE + W_Att	0.0816	0.0353	0.0793	0.0515		
(4) gating: AE + GRU	0.0818	0.0352	0.0789	0.0512		
(5) gating: AE + CNN	0.0777	0.0335	0.0791	0.0495		
(6) GATE	0.1057	0.0477	0.1133	0.0708		

From (2), (3): our gating is better than regularization From (3), (4), (5): our word-attention achieves similar performance with fewer parameters From (3), (6): the item-item relations play an important role 12

Evaluation Results

• Case Study

Target	Neighbor	Score			
Eluctuations in naturally dynamics	enomic analysis of regulatory network dynamics reveals large topological changes (0)				
	Frequency of occurrence of numbers in the World Wide Web (10)				
i fuctuations in fictwork dynamics	Complex networks: Structure and dynamics (16)				
	Noise in protein expression scales with natural protein abundance (36)				

The Summary of Article 16797 in <i>citeulike-a</i>															
We	pres	ent	the	first	pa	parallel		imj	implementation			of the T-			
Coff	-based	sed multiple			al	aligner . We			benchmark						
it or	Elas	tic Cloud			(E	(EC2) and sho			ow that the			e			
parallelization pro				cocedu	re	is	rea	sona	bly	effe	ective	e. 1	We	als	0
conclude that for a web server with moderate usage (10k								K							
hits/month) the cloud provides						a	cost-	effec	tive	alt	ern	ativ	e t	0	
in-h	in-house deployment.														

Conclusion

We propose an **autoencoder-based** model, which consists of a **word-attention module**, a **neighbor-attention module**, and a **gating layer** to address the content-aware recommendation task.

Experimental results show that the proposed method outperforms the state-of-the-art methods significantly for content-aware recommendation.

Thank you!

Q & A

Email: chen.ma2@mail.mcgill.ca Code: https://github.com/allenjack/GATE LibRec: https://www.librec.net/

